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Grand Goal: Interactive Machine Learning

Query:

most effective drug dose?

most appealing website layout?

safest next robot action?

or

experiment

outcome
42

Main scientific questions

• Efficient systems

• Sample complexity as function of query and environment
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Pure Exploration vs Reinforcement Learning

Both are about learning in uncertain environments.

Pure Exploration focuses on the statistical problem (learn the truth),

while Reinforcement Learning focuses on behaviour (maximise reward).

Pure Exploration occurs as sub-module in some RL algorithms (i.e. Phased Q-Learning by

Even-Dar, Mannor, and Mansour, 2002)

Some problems approached with RL are in fact better modelled as pure exploration problems.

Most notably MCTS for playing games.



Pure Exploration vs Reinforcement Learning

Both are about learning in uncertain environments.

Pure Exploration focuses on the statistical problem (learn the truth),

while Reinforcement Learning focuses on behaviour (maximise reward).

Pure Exploration occurs as sub-module in some RL algorithms (i.e. Phased Q-Learning by

Even-Dar, Mannor, and Mansour, 2002)

Some problems approached with RL are in fact better modelled as pure exploration problems.

Most notably MCTS for playing games.



Pure Exploration vs Reinforcement Learning

Both are about learning in uncertain environments.

Pure Exploration focuses on the statistical problem (learn the truth),

while Reinforcement Learning focuses on behaviour (maximise reward).

Pure Exploration occurs as sub-module in some RL algorithms (i.e. Phased Q-Learning by

Even-Dar, Mannor, and Mansour, 2002)

Some problems approached with RL are in fact better modelled as pure exploration problems.

Most notably MCTS for playing games.



Pure Exploration vs Reinforcement Learning

Both are about learning in uncertain environments.

Pure Exploration focuses on the statistical problem (learn the truth),

while Reinforcement Learning focuses on behaviour (maximise reward).

Pure Exploration occurs as sub-module in some RL algorithms (i.e. Phased Q-Learning by

Even-Dar, Mannor, and Mansour, 2002)

Some problems approached with RL are in fact better modelled as pure exploration problems.

Most notably MCTS for playing games.



Outline

1. A Taste of the Problem Space

2. Formal Setup

3. Sample Complexity Lower Bounds: Information Theory

4. Numerical Illustration of Characteristic Time and Oracle Proportions

5. Design of Algorithms: Equilibria

6. Conclusion



Stochastic Bandit

Experiments

{
, ,

}
Outcomes

{
,

}

Instance (Unknown)

P
( ∣∣∣∣ )

= 1/6

P
( ∣∣∣∣ )

= 4/6

P
( ∣∣∣∣ )

= 3/6



Stochastic Bandit

Experiments

{
, ,

}
Outcomes

{
,

}
Instance (Unknown)

P
( ∣∣∣∣ )

= 1/6

P
( ∣∣∣∣ )

= 4/6

P
( ∣∣∣∣ )

= 3/6



Best Arm Identification Interaction

P
( ∣∣∣ )

= 1/6

P
( ∣∣∣ )

= 4/6

P
( ∣∣∣ )

= 3/6



Best Arm Identification Interaction

P
( ∣∣∣ )

= 1/6

P
( ∣∣∣ )

= 4/6

P
( ∣∣∣ )

= 3/6



Best Arm Identification Interaction

P
( ∣∣∣ )

= 1/6

P
( ∣∣∣ )

= 4/6

P
( ∣∣∣ )

= 3/6



Best Arm Identification Interaction

P
( ∣∣∣ )

= 1/6

P
( ∣∣∣ )

= 4/6

P
( ∣∣∣ )

= 3/6



Best Arm Identification Interaction

is best!

P
( ∣∣∣ )

= 1/6

P
( ∣∣∣ )

= 4/6

P
( ∣∣∣ )

= 3/6



Best Arm Identification Interaction

is best!

P
( ∣∣∣ )

= 1/6

P
( ∣∣∣ )

= 4/6

P
( ∣∣∣ )

= 3/6Desiderata

• Efficient:

few samples

• Reliable:

correct whp



Identification Problems

Problem (Even-Dar, Mannor, and Mansour, 2002)

Which arm has the highest mean

Arms: Bernoulli, Exp. Fam, bounded support, sub-Gaussian, . . .

Problem (Yu and Nikolova, 2013)

Which arm has the highest α-quantile

Arms: Unrestricted (on R)

Problem (Yu and Nikolova, 2013)

Which arm has the smallest Conditional Value at Risk.

Arms: Exp. Fam (trivial), bounded (1 + ϵ)th moment



Identification Problems (continued)

Set-valued Queries

Top-M, Thresholding, All ϵ-optimal, all-better-than-control

Structure: standard bandit

Ranking-related queries: Borda/Condorcet winner (Yue et al., 2012)

Structure: duelling bandit

Best arm in stratified population (Russac et al., 2021)

Structure: contextual bandit

Minimax action in extensive form game tree (Teraoka, Hatano, and Takimoto, 2014)

Structure: game tree with stochastic leaves

Shortest Path (Chen et al., 2014)

Structure: graph with stochastic edge costs
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Best Arm Identification (BAI)

Assumption: Bernoulli Multi-Armed Bandit

K Bernoulli arms with unknown means µ = (µ1, . . . , µK ) ∈ [0, 1]K .

The best arm is

i∗(µ) = argmaxi µi

BAI-MAB Protocol

for t = 1, 2, . . . until Learner decides to stop

• Learner picks arm At ∈ [K ]

• Learner observes Xt ∼ Bernoulli(µAt )

Learner recommends Î ∈ [K ].
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Instance-Dependent Sample Complexity Lower Bound

Intuition, going back at least to Lai and Robbins (1985)

(Spectacular) difference in behaviour must be due to (spectacular) difference in observations.

Being δ-PAC on µ and λ with i∗(µ) ̸= i∗(λ) requires gathering enough discriminating data.
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Characteristic Time and Oracle Proportions
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Examples: variations of Best Arm question

8.995 3.995 19.510 3.464

31.506 8.655 1.987 829

• Sample complexities vastly different between questions

• Optimal allocation depends strongly on the specific question being asked



Best Arm Identification (BAI)

i∗(µ) := argmax
a∈A

µa where A = {A,B,C ,D}

8.995



All-Better-than-the-Control (ABC)

i∗(µ) :=
{
a ∈ {B,C ,D}

∣∣ µa ≥ µA

}
3.995



All-Better-than-Threshold

i∗(µ) :=
{
a ∈ A

∣∣ µa ≥ γ
}

19.510



Top-2

i∗(µ) :=
{
a ∈ A

∣∣ µa ≥ µ(2)

}
where µ(1) ≥ µ(2) ≥ . . .

3.464



Near-optimal arms

i∗(µ) :=
{
a ∈ A

∣∣ µa ≥ µ∗ − ϵ
}

where µ∗ = max
a∈A

µa

31.506



Winning Side

i∗(µ) := argmax
{
max {µA, µB} ,max {µC , µD}

}
8.655



Robust best arm

i∗(µ) := argmax
{
min {µA, µB} ,min {µC , µD}

}
1.987



Largest Profit

i∗(µ) := argmax {µA − µB , µC − µD}

829



Tree Search Example: Backward Induction Computation
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Tree Search Example: Best action at root

i∗(µ) := argmax
i

min
j

max
k

min
l

µijkl ∈ {left, right}

5 4 4 2 1 7 8 5 3 4 2 6 8 1 9 8

224



Overview of Optimal Sampling Allocations

8.995 3.995 19.510 3.464

31.506 8.655 1.987 829

• Sample complexities vastly different between questions

• Optimal allocation depends strongly on the specific question being asked
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Lower Bounds Inspire Strategies

Recall sample complexity lower bound at bandit µ governed by

max
w∈△K

min
λ∈Alt(µ)

K∑
i=1

wi KL(µi , λi )

Matching algorithms must sample arms with argmax proportions w∗(µ).

Main issue: Bandit instance µ unknown

Approach: plug in estimate µ̂t (Garivier and Kaufmann, 2016)
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Saddle Point Techniques Im
port

online
learning

techniquesmax
w∈△K

min
λ∈Alt(µ)

K∑
i=1

wi KL(µi , λi )

Approx. solve saddle point problem iteratively: w1,w2, . . .→ w∗(µ)

Main pipeline (Degenne, Koolen, and Ménard, 2019):

• Pick arm At ∼ wt

• Plug-in estimate µ̂t (so problem is shifting).

• Advance the saddle point solver one iteration per bandit interaction.

• Add optimism to gradients to induce exploration (µ̂t → µ).

• Compose regret bound, concentration and optimism to get finite-confidence guarantee.

Theorem (Instance-Optimality)

For every δ ∈ (0, 1), the sample complexity is bounded by Eµ[τ ] ≤ T ∗(µ) ln 1
δ + o(ln 1

δ ).
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Sketch of Argument

As long as we do not stop (and concentration holds):

ln
1

δ
≥ inf

λ∈Alt(µ̂t)

K∑
k=1

Nk
t KL(µk , λk) (stop rule)

≈ inf
λ∈Alt(µ)

t∑
s=1

K∑
k=1

wk
s KL(µk , λk) (tracking)

≥
t∑

s=1

K∑
k=1

wk
s Eλ∼qs KL(µ

k , λk)− Rλ
t (regret λ)

≥ max
k

t∑
s=1

Eλ∼qs KL(µ
k , λk)− Rλ

t − Rk
t (regret k)

≥ t inf
q∈P(Alt(µ))

max
k

Eλ∼q KL(µ
k , λk)− O(

√
t)

= t max
w∈△K

min
λ∈Alt(µ)

K∑
i=1

wi KL(µi , λi ) − O(
√
t)

But µ unknown → optimism to explore efficiently.
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Conclusion

Canonical Path to Instance Optimality

• State-of-the-art performance in practise (some problems)

• Best Arm Identification

• All-better-than-Control

• Minimax Game Tree Search

• Different (“fresh”) structure compared to other techniques (confidence intervals,

elimination, Thompson sampling, . . . )

• Reduces identification problems to online learning

(efficiently computing gradients/best response).

• Foundation for

• Linear bandits

• Contextual bandits

• Optimal policy learning (reinforcement learning)

Wish list:

• Instance optimality for (ϵ, δ)-case currently deeply asymptotic



Conclusion

Canonical Path to Instance Optimality

• State-of-the-art performance in practise (some problems)

• Best Arm Identification

• All-better-than-Control

• Minimax Game Tree Search

• Different (“fresh”) structure compared to other techniques (confidence intervals,

elimination, Thompson sampling, . . . )

• Reduces identification problems to online learning

(efficiently computing gradients/best response).

• Foundation for

• Linear bandits

• Contextual bandits

• Optimal policy learning (reinforcement learning)

Wish list:

• Instance optimality for (ϵ, δ)-case currently deeply asymptotic



Conclusion

Canonical Path to Instance Optimality

• State-of-the-art performance in practise (some problems)

• Best Arm Identification

• All-better-than-Control

• Minimax Game Tree Search

• Different (“fresh”) structure compared to other techniques (confidence intervals,

elimination, Thompson sampling, . . . )

• Reduces identification problems to online learning

(efficiently computing gradients/best response).

• Foundation for

• Linear bandits

• Contextual bandits

• Optimal policy learning (reinforcement learning)

Wish list:

• Instance optimality for (ϵ, δ)-case currently deeply asymptotic



Conclusion

Canonical Path to Instance Optimality

• State-of-the-art performance in practise (some problems)

• Best Arm Identification

• All-better-than-Control

• Minimax Game Tree Search

• Different (“fresh”) structure compared to other techniques (confidence intervals,

elimination, Thompson sampling, . . . )

• Reduces identification problems to online learning

(efficiently computing gradients/best response).

• Foundation for

• Linear bandits

• Contextual bandits

• Optimal policy learning (reinforcement learning)

Wish list:

• Instance optimality for (ϵ, δ)-case currently deeply asymptotic



Thanks!
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F. d’Alché-Buc, E. Fox, and R. Garnett. Curran Associates, Inc., pp. 14492–14501.

Even-Dar, E., S. Mannor, and Y. Mansour (2002). “PAC Bounds for Multi-armed Bandit

and Markov Decision Processes”. In: Computational Learning Theory, 15th Annual

Conference on Computational Learning Theory, COLT 2002, Sydney, Australia, July

8-10, 2002, Proceedings. Ed. by J. Kivinen and R. H. Sloan. Vol. 2375. Lecture Notes in

Computer Science. Springer, pp. 255–270.



References ii

Garivier, A. and E. Kaufmann (2016). “Optimal Best arm Identification with Fixed

Confidence”. In: Proceedings of the 29th Conference On Learning Theory (COLT).

Lai, T. L. and H. Robbins (1985). “Asymptotically efficient adaptive allocation rules”. In:

Advances in Applied Mathematics 6.1, pp. 4–22.

Russac, Y., C. Katsimerou, D. Bohle, O. Cappé, A. Garivier, and W. M. Koolen (Dec.
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