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This talk is about

Understanding Interactive Learning

What if the learning system can decide which data to collect?

• How many experiments are needed?

• Which experiments to pick?

• How to learn from the data collected?

Today: Active Sequential Hypothesis Testing. Applications to

• Medical testing

• A/B testing (e-commerce)

• Simulation-based planning

• Reinforcement learning

• . . .
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Identification Problems

Problem (Even-Dar, Mannor, and Mansour, 2002)

Which arm has the highest mean

Arms: Bernoulli, Exp. Fam, bounded support, sub-Gaussian, . . .

Problem (Yu and Nikolova, 2013)

Which arm has the highest α-quantile

Arms: Unrestricted (on R)

Problem (Yu and Nikolova, 2013)

Which arm has the smallest Conditional Value at Risk.

Arms: Exp. Fam (trivial), bounded (1 + ϵ)th moment
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Best Arm Identification (BAI)

Assumption: Bernoulli Multi-Armed Bandit

K Bernoulli arms with unknown means µ = (µ1, . . . , µK ) ∈ [0, 1]K .

BAI-MAB Protocol

for t = 1, 2, . . . until Learner decides to stop

• Learner picks arm At ∈ [K ]

• Learner observes Xt ∼ Bernoulli(µAt )

Learner recommends Î ∈ [K ].
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{
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Let τ ∈ N ∪ {∞} denote the # rounds after which Learner stops.

Definition

Learner is δ-PAC if

Pµ

{
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Pure Exploration Prototypical Solution

Goal: efficient δ-PAC algorithms with minimal sample complexity.

Fancy Algorithm(δ)

Stop when . . .

Sample arm At = . . .

Recommend Î = . . .

Theorem (lower bd)

Any δ-PAC algorithm needs

sample complexity at least

Eµ[τ ] ≥ f (µ) ln 1
δ

Theorem (safe)

Fancy Algorithm(δ) is δ-PAC

Theorem (comput. eff.)

. . . runs in time O(. . . )

Theorem (statistic. eff.)

. . . has sample complexity

Eµ[τ ] ≤ f (µ) ln 1
δ + o(ln 1

δ ).
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Instance-Dependent Sample Complexity Lower Bound

Intuition, going back at least to Lai and Robbins (1985)

A (spectacular) difference in behaviour must be due to a (spectacular)

difference in the observations.

So being δ-PAC on µ and also on λ with i∗(µ) ̸= i∗(λ) requires

collecting enough discriminating information.
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0.0956
= 18.4
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collecting enough discriminating information.

Define the alternative to µ by Alt(µ) := {bandit λ|i∗(λ) ̸= i∗(µ)}.

Theorem (Castro 2014; Garivier and Kaufmann 2016)

Fix a δ-correct strategy. Then for every bandit model µ ∈M

Eµ[τ ] ≥ T ∗(µ) ln
1

δ

where the characteristic time T ∗(µ) is given by
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Lower Bounds Inspire Strategies

Recall sample complexity lower bound at bandit µ governed by

max
w∈△K

min
λ∈Alt(µ)

K∑
i=1

wi KL(µi , λi )

Matching algorithms must sample arms with argmax proportions w∗(µ).

Main issue: Bandit instance µ unknown

Approach: plug in estimate µ̂t (Garivier and Kaufmann, 2016)
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Saddle Point Techniques Im
port

online
learning

techniquesmax
w∈△K

min
λ∈Alt(µ)

K∑
i=1

wi KL(µi , λi )

Approx. solve saddle point problem iteratively: w1,w2, . . .→ w∗(µ)

Main pipeline (Degenne, Koolen, and Ménard, 2019):

• Pick arm At ∼ wt

• Plug-in estimate µ̂t (so problem is shifting).

• Advance the saddle point solver one iteration per bandit interaction.

• Add optimism to gradients to induce exploration (µ̂t → µ).

• Compose regret bound, concentration and optimism to get

finite-confidence guarantee.

Theorem (Instance-Optimality)

For every δ ∈ (0, 1), the sample complexity is bounded by

Eµ[τ ] ≤ T ∗(µ) ln 1
δ + o(ln 1

δ )
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Conclusion

Canonical Path to Instance Optimality

• State-of-the-art performance in practise (some problems)

• Best Arm Identification

• All-better-than-Control

• Minimax Game Tree Search

• Different (“fresh”) structure compared to other techniques

(confidence intervals, elimination, Thompson sampling, . . . )

• Reduces identification problems to online learning

(efficiently computing gradients/best response).

• Foundation for

• Linear bandits

• Contextual bandits

• Optimal policy learning (reinforcement learning)
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Thanks!
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