Second-order Quantile Methods

Wouter M. Koolen Tim van Erven

Kyushu University, Monday 3rd October, 2016

Focus on expert setting

Online sequential prediction with expert advice

Core instance of advanced online learning tasks

- Bandits
- Combinatorial & matrix prediction
- Online convex optimization
- Boosting

Two reasons data is often easier in practice:

Model complexity

- Simple model is good
- Multiple good models

All we need is the right learning rate

All we need is the right learning rate

Can we exploit Second-order & Quantiles on-line?

All we need is the right learning rate

But everyone struggles with the learning rate

Oracle η

- not monotonic,
- not smooth

over time.

But everyone struggles with the learning rate

or

Oracle η

- not monotonic,
- not smooth

over time.

State of the art:

Main Result

Our new algorithm **Squint**

learns the learning rate. It offers

- Run-time of Hedge
- Tiny (In In T) overhead over oracle learning rate.
- Extension to Combinatorial Games
- Extension to Continuous domains (MetaGrad)

Overview

- Fundamental online learning problem
- Review previous guarantees
- New Squint algorithm with improved guarantees

Fundamental model for learning: Hedge setting

► *K* experts

Fundamental model for learning: Hedge setting

► *K* experts

- ln round $t = 1, 2, \ldots$
 - Learner plays distribution $w_t = (w_t^1, \dots, w_t^K)$ on experts
 - Adversary reveals expert losses $\ell_t = (\ell_t^1, \dots, \ell_t^K) \in [0, 1]^K$

• Learner incurs loss $w_t^{\mathsf{T}} \ell_t$

Fundamental model for learning: Hedge setting

► *K* experts

- ln round $t = 1, 2, \ldots$
 - Learner plays distribution $\boldsymbol{w}_t = (w_t^1, \dots, w_t^K)$ on experts
 - Adversary reveals expert losses $\ell_t = (\ell_t^1, \dots, \ell_t^K) \in [0, 1]^K$

- Learner incurs loss $w_t^{\mathsf{T}} \ell_t$
- The goal is to have small regret

$$R_{T}^{k} := \underbrace{\sum_{t=1}^{T} w_{t}^{\mathsf{T}} \ell_{t}}_{\text{Learner}} - \underbrace{\sum_{t=1}^{T} \ell_{t}^{k}}_{\text{Expert } k}$$

with respect to every expert k.

The Hedge algorithm with learning rate η

$$w_{t+1}^k \coloneqq \frac{e^{-\eta L_t^k}}{\sum_k e^{-\eta L_t^k}} \quad \text{where} \quad L_t^k = \sum_{s=1}^t \ell_s^k,$$

The Hedge algorithm with learning rate η

$$w_{t+1}^k \coloneqq \frac{e^{-\eta L_t^k}}{\sum_k e^{-\eta L_t^k}} \quad \text{where} \quad L_t^k = \sum_{s=1}^t \ell_s^k,$$

upon proper tuning of η ensures [Freund and Schapire, 1997]

 $R_T^k \prec \sqrt{T \ln K}$ for each expert k

which is tight for adversarial (worst-case) losses

The Hedge algorithm with learning rate η

$$w_{t+1}^k \coloneqq \frac{e^{-\eta L_t^k}}{\sum_k e^{-\eta L_t^k}} \quad \text{where} \quad L_t^k = \sum_{s=1}^t \ell_s^k,$$

upon proper tuning of η ensures [Freund and Schapire, 1997]

 $R_T^k \prec \sqrt{T \ln K}$ for each expert k

which is tight for adversarial (worst-case) losses

but underwhelming in practice

The Hedge algorithm with learning rate η

$$w_{t+1}^k \coloneqq \frac{e^{-\eta L_t^k}}{\sum_k e^{-\eta L_t^k}} \quad \text{where} \quad L_t^k = \sum_{s=1}^t \ell_s^k,$$

upon proper tuning of η ensures [Freund and Schapire, 1997]

 $R_T^k \prec \sqrt{T \ln K}$ for each expert k

which is tight for adversarial (worst-case) losses

but underwhelming in practice

Two broad lines of improvement.

The Hedge algorithm with learning rate η

$$w_{t+1}^k \coloneqq \frac{e^{-\eta L_t^k}}{\sum_k e^{-\eta L_t^k}} \quad \text{where} \quad L_t^k = \sum_{s=1}^t \ell_s^k,$$

upon proper tuning of η ensures [Freund and Schapire, 1997]

Second-order bounds

Cesa-Bianchi et al. [2007], Hazan and Kale [2010], Chiang et al. [2012], De Rooij et al. [2014], Gaillard et al. [2014], Steinhardt and Liang [2014]

 $R_T^k \prec \sqrt{V_T^k \ln K}$ for each expert k.

for some second-order quantity $V_T^k \leq L_T^k \leq T$.

Second-order bounds

Cesa-Bianchi et al. [2007], Hazan and Kale [2010], Chiang et al. [2012], De Rooij et al. [2014], Gaillard et al. [2014], Steinhardt and Liang [2014]

 $R_T^k \prec \sqrt{V_T^k \ln K}$ for each expert k.

for some second-order quantity $V_T^k \leq L_T^k \leq T$.

- Pro: stochastic case, learning sub-algorithms
- ► Con: specialized algorithms. hard-coded K.

Quantile bounds

Hutter and Poland [2005], Chaudhuri et al. [2009], Chernov and Vovk [2010], Luo and Schapire [2014]

Prior π on experts:

$$\min_{k\in\mathcal{K}} \mathbf{R}_{T}^{k} \prec \sqrt{T\left(-\ln \pi(\mathcal{K})\right)}$$

for each subset \mathcal{K} of experts

Quantile bounds

Hutter and Poland [2005], Chaudhuri et al. [2009], Chernov and Vovk [2010], Luo and Schapire [2014]

Prior π on experts:

$$\min_{k \in \mathcal{K}} \mathbb{R}^k_T \prec \sqrt{\mathcal{T}(-\ln \pi(\mathcal{K}))} \quad \text{for each subset } \mathcal{K} \text{ of experts}$$

- Pro: over-discretized models, company baseline
- ► Con: specialized algorithms. Efficiency. Inescapable *T*.

Our contribution

Squint [Koolen and Van Erven, 2015] guarantees

$$\mathcal{R}_{T}^{\mathcal{K}} \prec \sqrt{\mathcal{V}_{T}^{\mathcal{K}}(-\ln \pi(\mathcal{K}) + \mathcal{C}_{T})}$$
 for each subset \mathcal{K} of experts

where $R_T^{\mathcal{K}} = \mathbb{E}_{\pi(k|\mathcal{K})} R_T^k$ and $V_T^{\mathcal{K}} = \mathbb{E}_{\pi(k|\mathcal{K})} V_T^k$ denote the average (under the prior π) among the reference experts $k \in \mathcal{K}$ of the regret $R_T^k = \sum_{t=1}^T r_t^k$ and the (uncentered) variance of the excess losses $V_T^k = \sum_{t=1}^T (r_t^k)^2$ (where $r_t^k = (w_t - e_k)^{\mathsf{T}} \ell_t$).

The cool ...

- Squint aggregates over all learning rates
- While staying as efficient as Hedge

Fix prior $\pi(k)$ on experts and $\gamma(\eta)$ on learning rates $\eta \in [0, 1/2]$.

Fix prior $\pi(k)$ on experts and $\gamma(\eta)$ on learning rates $\eta \in [0, 1/2]$. Potential function

$$\Phi_{\mathcal{T}} := \mathbb{E}_{\pi(k)\gamma(\eta)} \left[e^{\eta R_T^k - \eta^2 V_T^k} \right],$$

Fix prior $\pi(k)$ on experts and $\gamma(\eta)$ on learning rates $\eta \in [0, 1/2]$. Potential function

$$\Phi_{\mathcal{T}} := \mathbb{E}_{\pi(k)\gamma(\eta)} \left[e^{\eta R_T^k - \eta^2 V_T^k} \right],$$

Weights

$$w_{T+1}^k := \frac{\pi(k) \mathbb{E}_{\gamma(\eta)} \left[e^{\eta R_T^k - \eta^2 V_T^k} \eta \right]}{\text{normalisation}}.$$

Fix prior $\pi(k)$ on experts and $\gamma(\eta)$ on learning rates $\eta \in [0, 1/2]$. Potential function

$$\Phi_T := \mathbb{E}_{\pi(k)\gamma(\eta)} \left[e^{\eta R_T^k - \eta^2 V_T^k} \right],$$

Weights

$$w_{T+1}^k \coloneqq \frac{\pi(k) \mathbb{E}_{\gamma(\eta)} \left[e^{\eta R_T^k - \eta^2 V_T^k} \eta \right]}{\text{normalisation}}.$$

Next:

- Argue weights ensure $1 = \Phi_0 \ge \Phi_1 \ge \Phi_2 \ge \cdots$.
- Derive second-order quantile bound from $\Phi_T \leq 1$.

Squint Analysis: Potential Decreases

Theorem Squint ensures: $1 = \Phi_0 \ge \Phi_1 \ge \Phi_2 \ge \cdots$ Proof

Let
$$f_T^{k,\eta} := e^{\eta R_T^k - \eta^2 V_T^k}$$
 so that $\Phi_T = \mathbb{E}_{\pi(k)\gamma(\eta)} \left[f_T^{k,\eta} \right].$

Squint Analysis: Potential Decreases

Theorem
Squint ensures:
$$1 = \Phi_0 \ge \Phi_1 \ge \Phi_2 \ge \cdots$$

Proof.
Let $f_T^{k,\eta} := e^{\eta R_T^k - \eta^2 V_T^k}$ so that $\Phi_T = \mathbb{E}_{\pi(k)\gamma(\eta)} \left[f_T^{k,\eta} \right]$. Then
 $\Phi_{T+1} = \underset{\pi(k)\gamma(\eta)}{\mathbb{E}} \left[f_{T+1}^{k,\eta} \right] = \underset{\pi(k)\gamma(\eta)}{\mathbb{E}} \left[f_T^{k,\eta} e^{\eta r_{T+1}^k - (\eta r_{T+1}^k)^2} \right]$
 $\leq \underset{\pi(k)\gamma(\eta)}{\mathbb{E}} \left[f_T^{k,\eta} (1 + \eta r_{T+1}^k) \right]$
 $= \Phi_T + \underset{\pi(k)\gamma(\eta)}{\mathbb{E}} \left[f_T^{k,\eta} \eta(w_{T+1} - e_k) \right]^{\mathsf{T}} \ell_{T+1}$

Squint Analysis: Potential Decreases

Theorem
Squint ensures:
$$1 = \Phi_0 \ge \Phi_1 \ge \Phi_2 \ge \cdots$$

Proof.
Let $f_T^{k,\eta} := e^{\eta R_T^k - \eta^2 V_T^k}$ so that $\Phi_T = \mathbb{E}_{\pi(k)\gamma(\eta)} \left[f_T^{k,\eta} \right]$. Then
 $\Phi_{T+1} = \underset{\pi(k)\gamma(\eta)}{\mathbb{E}} \left[f_{T+1}^{k,\eta} \right] = \underset{\pi(k)\gamma(\eta)}{\mathbb{E}} \left[f_T^{k,\eta} e^{\eta r_{T+1}^k - (\eta r_{T+1}^k)^2} \right]$
 $\le \underset{\pi(k)\gamma(\eta)}{\mathbb{E}} \left[f_T^{k,\eta} (1 + \eta r_{T+1}^k) \right]$
 $= \Phi_T + \underset{\pi(k)\gamma(\eta)}{\mathbb{E}} \left[f_T^{k,\eta} \eta(w_{T+1} - e_k) \right]^{\mathsf{T}} \ell_{T+1}$

and the weights $w_{\mathcal{T}+1} \propto \mathbb{E}_{\pi(k)\gamma(\eta)}\left[f_{\mathcal{T}}^{k,\eta}\eta e_k
ight]$ ensure

$$\mathbb{E}_{\pi(k)\gamma(\eta)}\left[f_{T}^{k,\eta}\eta(w_{T+1}-e_{k})\right] = \mathbb{E}_{\pi(k)\gamma(\eta)}\left[f_{T}^{k,\eta}\eta\right]w_{T+1} - \mathbb{E}_{\pi(k)\gamma(\eta)}\left[f_{T}^{k,\eta}\eta e_{k}\right] = 0.$$

Squint Analysis: Regret Bound

We have $1 \ge \Phi_T$. So for any k and η

$$0 \geq \ln \Phi_T = \ln \mathop{\mathbb{E}}_{\pi(k)\gamma(\eta)} \left[e^{\eta R_T^k - \eta^2 V_T^k} \right]$$
$$\geq \ln \left(\pi(k)\gamma(\eta) e^{\eta R_T^k - \eta^2 V_T^k} \right)$$
$$= \ln \pi(k) + \ln \gamma(\eta) + \eta R_T^k - \eta^2 V_T^k$$

Squint Analysis: Regret Bound

We have $1 \ge \Phi_T$. So for any k and η

$$0 \geq \ln \Phi_{T} = \ln \mathop{\mathbb{E}}_{\pi(k)\gamma(\eta)} \left[e^{\eta R_{T}^{k} - \eta^{2} V_{T}^{k}} \right]$$
$$\geq \ln \left(\pi(k)\gamma(\eta) e^{\eta R_{T}^{k} - \eta^{2} V_{T}^{k}} \right)$$
$$= \ln \pi(k) + \ln \gamma(\eta) + \eta R_{T}^{k} - \eta^{2} V_{T}^{k}$$

Now $\max_{\eta} \left\{ \eta R_T^k - \eta^2 V_T^k \right\} = \frac{(R_T^k)^2}{4V_T^k} \text{ at } \hat{\eta} = \frac{R_T^k}{2V_T^k} \text{ and hence}$ $\frac{(R_T^k)^2}{4V_T^k} \leq -\ln \pi(k) - \ln \gamma(\hat{\eta}),$

Squint Analysis: Regret Bound

We have $1 \ge \Phi_T$. So for any k and η

$$0 \geq \ln \Phi_{T} = \ln \mathop{\mathbb{E}}_{\pi(k)\gamma(\eta)} \left[e^{\eta R_{T}^{k} - \eta^{2} V_{T}^{k}} \right]$$
$$\geq \ln \left(\pi(k)\gamma(\eta) e^{\eta R_{T}^{k} - \eta^{2} V_{T}^{k}} \right)$$
$$= \ln \pi(k) + \ln \gamma(\eta) + \eta R_{T}^{k} - \eta^{2} V_{T}^{k}$$

Now
$$\max_{\eta} \left\{ \eta R_T^k - \eta^2 V_T^k \right\} = \frac{(R_T^k)^2}{4V_T^k}$$
 at $\hat{\eta} = \frac{R_T^k}{2V_T^k}$ and hence
$$\frac{(R_T^k)^2}{4V_T^k} \leq -\ln \pi(k) - \ln \gamma(\hat{\eta}),$$

SO

$$R_T^k \leq 2\sqrt{V_T^k\left(-\ln \pi(k) - \ln \gamma(\hat{\eta})\right)}$$
 for all k .

Idea: have prior $\gamma(\eta)$ put sufficient mass around optimal $\hat{\eta}$

Idea: have prior γ(η) put sufficient mass around optimal η̂
1. Uniform prior (generalizes to conjugate)

 $\gamma(\eta) = 2$

Efficient algorithm, $C_T = \ln V_T^{\mathcal{K}}$.

Idea: have prior γ(η) put sufficient mass around optimal η̂
1. Uniform prior (generalizes to conjugate)

 $\gamma(\eta) = 2$

Efficient algorithm, $C_T = \ln V_T^{\mathcal{K}}$.

2. Chernov and Vovk [2010] prior

$$\gamma(\eta) = \frac{\ln 2}{\eta \ln^2(\eta)}$$

Not efficient, $C_T = \ln \ln V_T^{\mathcal{K}}$.

Idea: have prior γ(η) put sufficient mass around optimal η̂
1. Uniform prior (generalizes to conjugate)

 $\gamma(\eta) = 2$

Efficient algorithm, $C_T = \ln V_T^{\mathcal{K}}$.

2. Chernov and Vovk [2010] prior

$$\gamma(\eta) = rac{\ln 2}{\eta \ln^2(\eta)}$$

Not efficient, $C_T = \ln \ln V_T^{\mathcal{K}}$.

3. Improper(!) log-uniform prior

$$\gamma(\eta) \;=\; rac{1}{\eta}$$

Efficient algorithm, $C_T = \ln \ln T$

Implementation of Squint w. log-uniform prior

Closed-form expression for weights:

$$egin{aligned} & w_{T+1}^k \propto \pi(k) \int_0^{1/2} e^{\eta R_T^k - \eta^2 V_T^k} \eta rac{1}{\eta} \, \mathrm{d}\eta \ & \propto \pi(k) e^{rac{(R_T^k)^2}{4V_T^k}} rac{\mathrm{erf}\left(rac{R_T^k}{2\sqrt{V_T^k}}
ight) - \mathrm{erf}\left(rac{R_T^k - V_T^k}{2\sqrt{V_T^k}}
ight) \ & \sqrt{V_T^k}. \end{aligned}$$

Note: erf part of e.g. C99 standard. Constant time per expert per round

Extensions I

Combinatorial concept class $C \subseteq \{0, 1\}^{K}$:

- Shortest path
- Spanning trees
- Permutations
- ▶ ...

Extensions I

Combinatorial concept class $C \subseteq \{0,1\}^{K}$:

- Shortest path
- Spanning trees
- Permutations

▶ ...

Component iProd [Koolen and Van Erven, 2015] guarantees:

$$egin{array}{ll} R^{m{u}}_T \ extsf{ } & \sqrt{V^{m{u}}_Tig(extsf{comp}(m{u})+m{K}m{\mathcal{C}}_Tig)} & extsf{ for each }m{u}\in extsf{conv}(\mathcal{C}). \end{array}$$

The reference set of experts \mathcal{K} is subsumed by an "average concept" vector $u \in \text{conv}(\mathcal{C})$, for which our bound relates the coordinate-wise average regret $\mathcal{R}_T^u = \sum_{t,k} u_k r_t^k$ to the averaged variance $V_T^u = \sum_{t,k} u_k (r_t^k)^2$ and the prior entropy comp(u).

Extensions I

Combinatorial concept class $C \subseteq \{0,1\}^{K}$:

- Shortest path
- Spanning trees
- Permutations

▶ ...

Component iProd [Koolen and Van Erven, 2015] guarantees:

$$egin{array}{ll} R^{m{u}}_T \ extsf{ } & \sqrt{V^{m{u}}_Tig(extsf{comp}(m{u})+m{K}m{\mathcal{C}}_Tig)} & extsf{ for each }m{u}\in extsf{conv}(\mathcal{C}). \end{array}$$

The reference set of experts \mathcal{K} is subsumed by an "average concept" vector $\boldsymbol{u} \in \text{conv}(\mathcal{C})$, for which our bound relates the coordinate-wise average regret $R_T^{\boldsymbol{u}} = \sum_{t,k} u_k r_t^k$ to the averaged variance $V_T^{\boldsymbol{u}} = \sum_{t,k} u_k (r_t^k)^2$ and the prior entropy $\text{comp}(\boldsymbol{u})$.

No range factor. Drop-in replacement for Component Hedge [Koolen, Warmuth, and Kivinen, 2010]

Extensions II

Setup generalized to

- Continuous (bounded) domain $\mathcal{U} \subseteq \mathbb{R}^d$
- Convex loss functions $f_t : \mathcal{U} \to \mathbb{R}$

Includes:

- Previous settings (linear)
- Online convex optimization

Extensions II

Setup generalized to

- Continuous (bounded) domain $\mathcal{U} \subseteq \mathbb{R}^d$
- Convex loss functions $f_t : \mathcal{U} \to \mathbb{R}$

Includes:

- Previous settings (linear)
- Online convex optimization

MetaGrad [Van Erven and Koolen, 2016] guarantees:

$$R^{\boldsymbol{u}}_T \prec \sqrt{V^{\boldsymbol{u}}_T d \ln T}$$
 for each $\boldsymbol{u} \in \mathcal{U}$.

Extensions II

Setup generalized to

- Continuous (bounded) domain $\mathcal{U} \subseteq \mathbb{R}^d$
- Convex loss functions $f_t : \mathcal{U} \to \mathbb{R}$

Includes:

- Previous settings (linear)
- Online convex optimization

MetaGrad [Van Erven and Koolen, 2016] guarantees:

$$R^{\boldsymbol{u}}_T \prec \sqrt{V^{\boldsymbol{u}}_T d \ln T}$$
 for each $\boldsymbol{u} \in \mathcal{U}$.

- Weights become Gaussians.
- Run-time $O(d^2)$ per round (like Online Newton Step).

Conclusion

Central idea: learning the learning rate

A new set of tools

- fresh
- different
- efficient

for the well-studied experts problem.

Powerful generalizations to more complex problems.

Thank you!