Second-order Quantile Methods

Wouter M. Koolen Tim van Erven

CWI

Kyushu University, Monday $3^{\text {rd }}$ October, 2016

Focus on expert setting

Online sequential prediction with expert advice

Core instance of advanced online learning tasks

- Bandits
- Combinatorial \& matrix prediction
- Online convex optimization
- Boosting
- ...

Beyond the Worst Case

Two reasons data is often easier in practice:

Beyond the Worst Case

Two reasons data is often easier in practice:

Data complexity

- Stochastic data (gap)
- Low noise
- Low variance

Beyond the Worst Case

Two reasons data is often easier in practice:

Beyond the Worst Case

Two reasons data is often easier in practice:

Beyond the Worst Case

Two reasons data is often easier in practice:

Beyond the Worst Case

Two reasons data is often easier in practice:

All we need is the right learning rate

Sec-ord. \& Quant.

All we need is the right learning rate

oracle learning rate η

Can we exploit Second-order \& Quantiles on-line?

All we need is the right learning rate

Can we exploit Second-order \& Quantiles on-line?

Can we learn the learning rate?

But everyone struggles with the learning rate

Oracle η

- not monotonic,
- not smooth
over time.

But everyone struggles with the learning rate

Oracle η

- not monotonic,
- not smooth
over time.

State of the art:
Second-order

Main Result

Our new algorithm Squint

learns the learning rate. It offers

- Run-time of Hedge
- Tiny $(\ln \ln T)$ overhead over oracle learning rate.
- Extension to Combinatorial Games
- Extension to Continuous domains (MetaGrad)

Overview

- Fundamental online learning problem
- Review previous guarantees
- New Squint algorithm with improved guarantees

Fundamental model for learning: Hedge setting

- K experts

Fundamental model for learning: Hedge setting

- K experts

- In round $t=1,2, \ldots$
- Learner plays distribution $\boldsymbol{w}_{t}=\left(w_{t}^{1}, \ldots, w_{t}^{K}\right)$ on experts
- Adversary reveals expert losses $\ell_{t}=\left(\ell_{t}^{1}, \ldots, \ell_{t}^{K}\right) \in[0,1]^{K}$

- Learner incurs loss $\boldsymbol{w}_{t}^{\top} \ell_{t}$

Fundamental model for learning: Hedge setting

- K experts

- In round $t=1,2, \ldots$
- Learner plays distribution $\boldsymbol{w}_{t}=\left(w_{t}^{1}, \ldots, w_{t}^{K}\right)$ on experts
- Adversary reveals expert losses $\ell_{t}=\left(\ell_{t}^{1}, \ldots, \ell_{t}^{K}\right) \in[0,1]^{K}$

- Learner incurs loss $\boldsymbol{w}_{t}^{\top} \ell_{t}$
- The goal is to have small regret

$$
R_{T}^{k}:=\underbrace{\sum_{t=1}^{T} w_{t}^{\top} \ell_{t}}_{\text {Learner }}-\underbrace{\sum_{t=1}^{T} \ell_{t}^{k}}_{\text {Expert } k}
$$

with respect to every expert k.

Classic Hedge Result

The Hedge algorithm with learning rate η

$$
w_{t+1}^{k}:=\frac{e^{-\eta L_{t}^{k}}}{\sum_{k} e^{-\eta L_{t}^{k}}} \quad \text { where } \quad L_{t}^{k}=\sum_{s=1}^{t} \ell_{s}^{k}
$$

Classic Hedge Result

The Hedge algorithm with learning rate η

$$
w_{t+1}^{k}:=\frac{e^{-\eta L_{t}^{k}}}{\sum_{k} e^{-\eta L_{t}^{k}}} \quad \text { where } \quad L_{t}^{k}=\sum_{s=1}^{t} \ell_{s}^{k}
$$

upon proper tuning of η ensures [Freund and Schapire, 1997]

$$
R_{T}^{k} \prec \sqrt{T \ln K} \quad \text { for each expert } k
$$

which is tight for adversarial (worst-case) losses

Classic Hedge Result

The Hedge algorithm with learning rate η

$$
w_{t+1}^{k}:=\frac{e^{-\eta L_{t}^{k}}}{\sum_{k} e^{-\eta L_{t}^{k}}} \quad \text { where } \quad L_{t}^{k}=\sum_{s=1}^{t} \ell_{s}^{k}
$$

upon proper tuning of η ensures [Freund and Schapire, 1997]

$$
R_{T}^{k} \prec \sqrt{T \ln K} \quad \text { for each expert } k
$$

which is tight for adversarial (worst-case) losses
but underwhelming in practice

Classic Hedge Result

The Hedge algorithm with learning rate η

$$
w_{t+1}^{k}:=\frac{e^{-\eta L_{t}^{k}}}{\sum_{k} e^{-\eta L_{t}^{k}}} \quad \text { where } \quad L_{t}^{k}=\sum_{s=1}^{t} \ell_{s}^{k},
$$

upon proper tuning of η ensures [Freund and Schapire, 1997]

$$
R_{T}^{k} \prec \sqrt{T \ln K} \quad \text { for each expert } k
$$

which is tight for adversarial (worst-case) losses

> but underwhelming in practice

Two broad lines of improvement.

Classic Hedge Result

The Hedge algorithm with learning rate η

$$
w_{t+1}^{k}:=\frac{e^{-\eta L_{t}^{k}}}{\sum_{k} e^{-\eta L_{t}^{k}}} \quad \text { where } \quad L_{t}^{k}=\sum_{s=1}^{t} \ell_{s}^{k},
$$

upon proper tuning of η ensures [Freund and Schapire, 1997]

Second-order bounds

Cesa-Bianchi et al. [2007], Hazan and Kale [2010], Chiang et al. [2012], De Rooij et al. [2014], Gaillard et al. [2014], Steinhardt and Liang [2014]

$$
R_{T}^{k} \prec \sqrt{V_{T}^{k} \ln K} \quad \text { for each expert } k
$$

for some second-order quantity $V_{T}^{k} \leq L_{T}^{k} \leq T$.

Second-order bounds

Cesa-Bianchi et al. [2007], Hazan and Kale [2010], Chiang et al. [2012], De Rooij et al. [2014], Gaillard et al. [2014], Steinhardt and Liang [2014]

$$
R_{T}^{k} \prec \sqrt{V_{T}^{k} \ln K} \quad \text { for each expert } k
$$

for some second-order quantity $V_{T}^{k} \leq L_{T}^{k} \leq T$.

- Pro: stochastic case, learning sub-algorithms
- Con: specialized algorithms. hard-coded K.

Quantile bounds

Hutter and Poland [2005], Chaudhuri et al. [2009], Chernov and Vovk [2010], Luo and Schapire [2014]

Prior π on experts:

$$
\min _{k \in \mathcal{K}} R_{T}^{k} \prec \sqrt{T(-\ln \pi(\mathcal{K}))} \quad \text { for each subset } \mathcal{K} \text { of experts }
$$

Quantile bounds

Hutter and Poland [2005], Chaudhuri et al. [2009], Chernov and Vovk [2010], Luo and Schapire [2014]

Prior π on experts:

$$
\min _{k \in \mathcal{K}} R_{T}^{k} \prec \sqrt{T(-\ln \pi(\mathcal{K}))} \quad \text { for each subset } \mathcal{K} \text { of experts }
$$

- Pro: over-discretized models, company baseline
- Con: specialized algorithms. Efficiency. Inescapable T.

Our contribution

Squint [Koolen and Van Erven, 2015] guarantees
$R_{T}^{\mathcal{K}} \prec \sqrt{V_{T}^{\mathcal{K}}\left(-\ln \pi(\mathcal{K})+C_{T}\right)} \quad$ for each subset \mathcal{K} of experts
where $R_{T}^{\mathcal{K}}=\mathbb{E}_{\pi(k \mid \mathcal{K})} R_{T}^{k}$ and $V_{T}^{\mathcal{K}}=\mathbb{E}_{\pi(k \mid \mathcal{K})} V_{T}^{k}$ denote the average (under the prior π) among the reference experts $k \in \mathcal{K}$ of the regret $R_{T}^{k}=\sum_{t=1}^{T} r_{t}^{k}$ and the (uncentered) variance of the excess losses $V_{T}^{k}=\sum_{t=1}^{T}\left(r_{t}^{k}\right)^{2}\left(\right.$ where $\left.r_{t}^{k}=\left(\boldsymbol{w}_{t}-\boldsymbol{e}_{k}\right)^{\top} \boldsymbol{\ell}_{t}\right)$.

The cool ...

- Squint aggregates over all learning rates
- While staying as efficient as Hedge

Squint

Fix prior $\pi(k)$ on experts and $\gamma(\eta)$ on learning rates $\eta \in[0,1 / 2]$.

Squint

Fix prior $\pi(k)$ on experts and $\gamma(\eta)$ on learning rates $\eta \in[0,1 / 2]$.
Potential function

$$
\Phi_{T}:=\underset{\pi(k) \gamma(\eta)}{\mathbb{E}}\left[e^{\eta R_{T}^{k}-\eta^{2} V_{T}^{k}}\right],
$$

Squint

Fix prior $\pi(k)$ on experts and $\gamma(\eta)$ on learning rates $\eta \in[0,1 / 2]$.
Potential function

$$
\Phi_{T}:=\underset{\pi(k) \gamma(\eta)}{\mathbb{E}}\left[e^{\eta R_{T}^{k}-\eta^{2} V_{T}^{k}}\right]
$$

Weights

$$
w_{T+1}^{k}:=\frac{\pi(k) \mathbb{E}_{\gamma(\eta)}\left[e^{\eta R_{T}^{k}-\eta^{2} V_{T}^{k}} \eta\right]}{\text { normalisation }}
$$

Squint

Fix prior $\pi(k)$ on experts and $\gamma(\eta)$ on learning rates $\eta \in[0,1 / 2]$.
Potential function

$$
\Phi_{T}:=\underset{\pi(k) \gamma(\eta)}{\mathbb{E}}\left[e^{\eta R_{T}^{k}-\eta^{2} V_{T}^{k}}\right]
$$

Weights

$$
w_{T+1}^{k}:=\frac{\pi(k) \mathbb{E}_{\gamma(\eta)}\left[e^{\eta R_{T}^{k}-\eta^{2} V_{T}^{k} \eta}\right]}{\text { normalisation }}
$$

Next:

- Argue weights ensure $1=\Phi_{0} \geq \Phi_{1} \geq \Phi_{2} \geq \cdots$.
- Derive second-order quantile bound from $\Phi_{T} \leq 1$.

Squint Analysis: Potential Decreases

Theorem
Squint ensures: $1=\Phi_{0} \geq \Phi_{1} \geq \Phi_{2} \geq \cdots$
Proof.
Let $f_{T}^{k, \eta}:=e^{\eta R_{T}^{k}-\eta^{2} V_{T}^{k}}$ so that $\Phi_{T}=\mathbb{E}_{\pi(k) \gamma(\eta)}\left[f_{T}^{k, \eta}\right]$.

Squint Analysis: Potential Decreases

Theorem

Squint ensures: $1=\Phi_{0} \geq \Phi_{1} \geq \Phi_{2} \geq \cdots$
Proof.
Let $f_{T}^{k, \eta}:=e^{\eta R_{T}^{k}-\eta^{2} V_{T}^{k}}$ so that $\Phi_{T}=\mathbb{E}_{\pi(k) \gamma(\eta)}\left[f_{T}^{k, \eta}\right]$. Then

$$
\begin{aligned}
\Phi_{T+1}=\underset{\pi(k) \gamma(\eta)}{\mathbb{E}}\left[f_{T+1}^{k, \eta}\right] & =\underset{\pi(k) \gamma(\eta)}{\mathbb{E}}\left[f_{T}^{k, \eta} e^{\eta r_{T+1}^{k}-\left(\eta r_{T+1}^{k}\right)^{2}}\right] \\
& \leq \underset{\pi(k) \gamma(\eta)}{\mathbb{E}}\left[f_{T}^{k, \eta}\left(1+\eta r_{T+1}^{k}\right)\right] \\
& =\Phi_{T}+\underset{\pi(k) \gamma(\eta)}{\mathbb{E}}\left[f_{T}^{k, \eta} \eta\left(\boldsymbol{w}_{T+1}-\boldsymbol{e}_{k}\right)\right]^{\top} \boldsymbol{\ell}_{T+1}
\end{aligned}
$$

Squint Analysis: Potential Decreases

Theorem

Squint ensures: $1=\Phi_{0} \geq \Phi_{1} \geq \Phi_{2} \geq \cdots$
Proof.
Let $f_{T}^{k, \eta}:=e^{\eta R_{T}^{k}-\eta^{2} V_{T}^{k}}$ so that $\Phi_{T}=\mathbb{E}_{\pi(k) \gamma(\eta)}\left[f_{T}^{k, \eta}\right]$. Then

$$
\begin{aligned}
\Phi_{T+1}=\underset{\pi(k) \gamma(\eta)}{\mathbb{E}}\left[f_{T+1}^{k, \eta}\right] & =\underset{\pi(k) \gamma(\eta)}{\mathbb{E}}\left[f_{T}^{k, \eta} e^{\left.\eta r_{T+1}^{k}-\left(\eta r_{T+1}^{k}\right)^{2}\right]}\right. \\
& \leq \underset{\pi(k) \gamma(\eta)}{\mathbb{E}}\left[f_{T}^{k, \eta}\left(1+\eta r_{T+1}^{k}\right)\right] \\
& =\Phi_{T}+\underset{\pi(k) \gamma(\eta)}{\mathbb{E}}\left[f_{T}^{k, \eta} \eta\left(\boldsymbol{w}_{T+1}-\boldsymbol{e}_{k}\right)\right]^{\top} \boldsymbol{\ell}_{T+1}
\end{aligned}
$$

and the weights $\boldsymbol{w}_{T+1} \propto \mathbb{E}_{\pi(k) \gamma(\eta)}\left[f_{T}^{k, \eta} \eta \boldsymbol{e}_{k}\right]$ ensure
$\underset{\pi(k) \gamma(\eta)}{\mathbb{E}}\left[f_{T}^{k, \eta} \eta\left(\boldsymbol{w}_{T+1}-\boldsymbol{e}_{k}\right)\right]=\underset{\pi(k) \gamma(\eta)}{\mathbb{E}}\left[f_{T}^{k, \eta} \eta\right] \boldsymbol{w}_{T+1}-\underset{\pi(k) \gamma(\eta)}{\mathbb{E}}\left[f_{T}^{k, \eta} \eta \boldsymbol{e}_{k}\right]=\mathbf{0}$.

Squint Analysis: Regret Bound

We have $1 \geq \Phi_{T}$. So for any k and η

$$
\begin{aligned}
0 \geq \ln \Phi_{T} & =\ln \underset{\pi(k) \gamma(\eta)}{\mathbb{E}}\left[e^{\eta R_{T}^{k}-\eta^{2} V_{T}^{k}}\right] \\
& \geq \ln \left(\pi(k) \gamma(\eta) e^{\eta R_{T}^{k}-\eta^{2} V_{T}^{k}}\right) \\
& =\ln \pi(k)+\ln \gamma(\eta)+\eta R_{T}^{k}-\eta^{2} V_{T}^{k}
\end{aligned}
$$

Squint Analysis: Regret Bound

We have $1 \geq \Phi_{T}$. So for any k and η

$$
\begin{aligned}
0 \geq \ln \Phi_{T} & =\ln \underset{\pi(k) \gamma(\eta)}{\mathbb{E}}\left[e^{\eta R_{T}^{k}-\eta^{2} V_{T}^{k}}\right] \\
& \geq \ln \left(\pi(k) \gamma(\eta) e^{\eta R_{T}^{k}-\eta^{2} V_{T}^{k}}\right) \\
& =\ln \pi(k)+\ln \gamma(\eta)+\eta R_{T}^{k}-\eta^{2} V_{T}^{k}
\end{aligned}
$$

Now $\max _{\eta}\left\{\eta R_{T}^{k}-\eta^{2} V_{T}^{k}\right\}=\frac{\left(R_{T}^{k}\right)^{2}}{4 V_{T}^{k}}$ at $\hat{\eta}=\frac{R_{T}^{k}}{2 V_{T}^{k}}$ and hence

$$
\frac{\left(R_{T}^{k}\right)^{2}}{4 V_{T}^{k}} \leq-\ln \pi(k)-\ln \gamma(\hat{\eta})
$$

Squint Analysis: Regret Bound

We have $1 \geq \Phi_{T}$. So for any k and η

$$
\begin{aligned}
0 \geq \ln \Phi_{T} & =\ln \underset{\pi(k) \gamma(\eta)}{\mathbb{E}}\left[e^{\eta R_{T}^{k}-\eta^{2} V_{T}^{k}}\right] \\
& \geq \ln \left(\pi(k) \gamma(\eta) e^{\eta R_{T}^{k}-\eta^{2} V_{T}^{k}}\right) \\
& =\ln \pi(k)+\ln \gamma(\eta)+\eta R_{T}^{k}-\eta^{2} V_{T}^{k}
\end{aligned}
$$

Now $\max _{\eta}\left\{\eta R_{T}^{k}-\eta^{2} V_{T}^{k}\right\}=\frac{\left(R_{T}^{k}\right)^{2}}{4 V_{T}^{k}}$ at $\hat{\eta}=\frac{R_{T}^{k}}{2 V_{T}^{k}}$ and hence

$$
\frac{\left(R_{T}^{k}\right)^{2}}{4 V_{T}^{k}} \leq-\ln \pi(k)-\ln \gamma(\hat{\eta})
$$

SO

$$
R_{T}^{k} \leq 2 \sqrt{V_{T}^{k}(-\ln \pi(k) \underbrace{-\ln \gamma(\hat{\eta})}_{C_{T}}} \text { for all } k .
$$

Three priors

Idea: have prior $\gamma(\eta)$ put sufficient mass around optimal $\hat{\eta}$

Three priors

Idea: have prior $\gamma(\eta)$ put sufficient mass around optimal $\hat{\eta}$

1. Uniform prior (generalizes to conjugate)

$$
\gamma(\eta)=2
$$

Efficient algorithm, $C_{T}=\ln V_{T}^{\mathcal{K}}$.

Three priors

Idea: have prior $\gamma(\eta)$ put sufficient mass around optimal $\hat{\eta}$

1. Uniform prior (generalizes to conjugate)

$$
\gamma(\eta)=2
$$

Efficient algorithm, $C_{T}=\ln V_{T}^{\mathcal{K}}$.
2. Chernov and Vovk [2010] prior

$$
\gamma(\eta)=\frac{\ln 2}{\eta \ln ^{2}(\eta)}
$$

Not efficient, $C_{T}=\ln \ln V_{T}^{\mathcal{K}}$.

Three priors

Idea: have prior $\gamma(\eta)$ put sufficient mass around optimal $\hat{\eta}$

1. Uniform prior (generalizes to conjugate)

$$
\gamma(\eta)=2
$$

Efficient algorithm, $C_{T}=\ln V_{T}^{\mathcal{K}}$.
2. Chernov and Vovk [2010] prior

$$
\gamma(\eta)=\frac{\ln 2}{\eta \ln ^{2}(\eta)}
$$

Not efficient, $C_{T}=\ln \ln V_{T}^{\mathcal{K}}$.
3. Improper(!) log-uniform prior

$$
\gamma(\eta)=\frac{1}{\eta}
$$

Efficient algorithm, $C_{T}=\ln \ln T$

Implementation of Squint w. log-uniform prior

Closed-form expression for weights:

$$
\begin{aligned}
w_{T+1}^{k} & \propto \pi(k) \int_{0}^{1 / 2} e^{\eta R_{T}^{k}-\eta^{2} V_{T}^{k}} \eta \frac{1}{\eta} \mathrm{~d} \eta \\
& \propto \pi(k) e^{\frac{\left(R_{T}^{k}\right)^{2}}{4 V_{T}^{k}}} \frac{\operatorname{erf}\left(\frac{R_{T}^{k}}{2 \sqrt{V_{T}^{k}}}\right)-\operatorname{erf}\left(\frac{R_{T}^{k}-V_{T}^{k}}{2 \sqrt{V_{T}^{k}}}\right)}{\sqrt{V_{T}^{k}}}
\end{aligned}
$$

Note: erf part of e.g. C99 standard.
Constant time per expert per round

Extensions I

Combinatorial concept class $\mathcal{C} \subseteq\{0,1\}^{K}$:

- Shortest path
- Spanning trees
- Permutations

Extensions I

Combinatorial concept class $\mathcal{C} \subseteq\{0,1\}^{K}$:

- Shortest path
- Spanning trees
- Permutations

Component iProd [Koolen and Van Erven, 2015] guarantees:

$$
R_{T}^{u} \prec \sqrt{V_{T}^{u}\left(\operatorname{comp}(u)+K C_{T}\right)} \quad \text { for each } u \in \operatorname{conv}(\mathcal{C}) \text {. }
$$

The reference set of experts \mathcal{K} is subsumed by an "average concept" vector $\boldsymbol{u} \in \operatorname{conv}(\mathcal{C})$, for which our bound relates the coordinate-wise average regret $R_{T}^{u}=\sum_{t, k} u_{k} r_{t}^{k}$ to the averaged variance $V_{T}^{u}=\sum_{t, k} u_{k}\left(r_{t}^{k}\right)^{2}$ and the prior entropy $\operatorname{comp}(u)$.

Extensions I

Combinatorial concept class $\mathcal{C} \subseteq\{0,1\}^{K}$:

- Shortest path
- Spanning trees
- Permutations

Component iProd [Koolen and Van Erven, 2015] guarantees:

$$
R_{T}^{u} \prec \sqrt{V_{T}^{u}\left(\operatorname{comp}(u)+K C_{T}\right)} \quad \text { for each } \boldsymbol{u} \in \operatorname{conv}(\mathcal{C}) \text {. }
$$

The reference set of experts \mathcal{K} is subsumed by an "average concept" vector $\boldsymbol{u} \in \operatorname{conv}(\mathcal{C})$, for which our bound relates the coordinate-wise average regret $R_{T}^{u}=\sum_{t, k} u_{k} r_{t}^{k}$ to the averaged variance $V_{T}^{u}=\sum_{t, k} u_{k}\left(r_{t}^{k}\right)^{2}$ and the prior entropy comp (u).

No range factor. Drop-in replacement for Component Hedge

Extensions II

Setup generalized to

- Continuous (bounded) domain $\mathcal{U} \subseteq \mathbb{R}^{d}$
- Convex loss functions $f_{t}: \mathcal{U} \rightarrow \mathbb{R}$

Includes:

- Previous settings (linear)
- Online convex optimization

Extensions II

Setup generalized to

- Continuous (bounded) domain $\mathcal{U} \subseteq \mathbb{R}^{d}$
- Convex loss functions $f_{t}: \mathcal{U} \rightarrow \mathbb{R}$

Includes:

- Previous settings (linear)
- Online convex optimization

MetaGrad [Van Erven and Koolen, 2016] guarantees:

$$
R_{T}^{u} \prec \sqrt{V_{T}^{u} d \ln T} \quad \text { for each } u \in \mathcal{U} \text {. }
$$

Extensions II

Setup generalized to

- Continuous (bounded) domain $\mathcal{U} \subseteq \mathbb{R}^{d}$
- Convex loss functions $f_{t}: \mathcal{U} \rightarrow \mathbb{R}$

Includes:

- Previous settings (linear)
- Online convex optimization

MetaGrad [Van Erven and Koolen, 2016] guarantees:

$$
R_{T}^{u} \prec \sqrt{V_{T}^{u} d \ln T} \quad \text { for each } u \in \mathcal{U} \text {. }
$$

- Weights become Gaussians.
- Run-time $O\left(d^{2}\right)$ per round (like Online Newton Step).

Conclusion

Central idea: learning the learning rate
A new set of tools

- fresh
- different
- efficient
for the well-studied experts problem.
Powerful generalizations to more complex problems.

Thank you!

