The Pareto Regret Frontier

Wouter M. Koolen

The online learning philosophy

Want to solve a learning problem?

The online learning philosophy

Want to solve a learning problem?

- Get hold of a bunch of
- trivial approaches ©

The online learning philosophy

Want to solve a learning problem?

- Get hold of a bunch of
- trivial approaches ©
- models from literature (랑

The online learning philosophy

Want to solve a learning problem?

- Get hold of a bunch of
- trivial approaches ©
- models from literature ${ }^{(2)}$
- students (\$)

The online learning philosophy

Want to solve a learning problem?

- Get hold of a bunch of
- trivial approaches ©
- models from literature ${ }^{(2)}$
- students (\$)
- employees (\$\$)

The online learning philosophy

Want to solve a learning problem?

- Get hold of a bunch of
- trivial approaches ©
- models from literature ${ }^{(2)}$
- students (\$)
- employees (\$\$)
- companies (\$\$\$)

The online learning philosophy

Want to solve a learning problem?

- Get hold of a bunch of
- trivial approaches ©
- models from literature ${ }^{(2)}$
- students (\$)
- employees (\$\$)
- companies (\$\$\$)
- ...

The online learning philosophy

Want to solve a learning problem?

- Get hold of a bunch of
- trivial approaches ©
- models from literature ${ }^{(2)}$
- students (\$)
- employees (\$\$)
- companies (\$\$\$)
- ...
- Each "expert" implements a solution

The online learning philosophy

Want to solve a learning problem?

- Get hold of a bunch of
- trivial approaches ©
- models from literature (${ }^{-}$
- students (\$)
- employees (\$\$)
- companies (\$\$\$)
- ...
- Each "expert" implements a solution
- Use aggregation algorithm to combine solutions in production

The online learning philosophy

Want to solve a learning problem?

- Get hold of a bunch of
- trivial approaches ()
- models from literature (${ }^{-}$
- students (\$)
- employees (\$\$)
- companies (\$\$\$)
- ...
- Each "expert" implements a solution
- Use aggregation algorithm to combine solutions in production
. Profit!

That aggregation algorithm

T rounds, K experts

That aggregation algorithm

T rounds, K experts

What if

- Lots of experts? shotgun-style "throw in all you got"
- Special experts? company's current strategy

Regret as a multi-objective criterion

A vector $\left\langle r_{1} \ldots r_{K}\right\rangle$ is T-realisable if there is a strategy ensuring

$$
L_{T}-L_{T}^{k} \leq r_{k} \quad \text { for each expert } k
$$

Regret as a multi-objective criterion

A vector $\left\langle r_{1} \ldots r_{K}\right\rangle$ is T-realisable if there is a strategy ensuring

$$
L_{T}-L_{T}^{k} \leq r_{k} \quad \text { for each expert } k
$$

Suggestive: for every expert prior \mathbb{P}, the following is T-realisable:

$$
\langle\sqrt{T / 2(-\ln \mathbb{P}(k))}\rangle_{k=1}^{K}
$$

Regret as a multi-objective criterion

A vector $\left\langle r_{1} \ldots r_{K}\right\rangle$ is T-realisable if there is a strategy ensuring

$$
L_{T}-L_{T}^{k} \leq r_{k} \quad \text { for each expert } k
$$

Suggestive: for every expert prior \mathbb{P}, the following is T-realisable:

$$
\langle\sqrt{T / 2(-\ln \mathbb{P}(k))}\rangle_{k=1}^{K}
$$

but this is false

Regret as a multi-objective criterion

A vector $\left\langle r_{1} \ldots r_{K}\right\rangle$ is T-realisable if there is a strategy ensuring

$$
L_{T}-L_{T}^{k} \leq r_{k} \quad \text { for each expert } k
$$

Suggestive: for every expert prior \mathbb{P}, the following is T-realisable:

$$
\langle\sqrt{T / 2(-\ln \mathbb{P}(k))}\rangle_{k=1}^{K}
$$

but this is false
So what can be realised?

Results in a nutshell

- Absolute loss (or $K=2$ experts)
- Exact results
- Characterisation of T-realisable frontier (combinatorial)
- Strategy for each trade-off

Results in a nutshell

- Absolute loss (or $K=2$ experts)
- Exact results
- Characterisation of T-realisable frontier (combinatorial)
- Strategy for each trade-off
- Asymptotic (large T):
- Smooth limit frontier
- Smooth limit strategy
- For any $p \in[0,1]$ we can realise:

$$
\langle\sqrt{T(-\ln (p))}, \sqrt{T(-\ln (1-p))}\rangle
$$

but we can do better(!)

Results in a nutshell

- Absolute loss (or $K=2$ experts)
- Exact results
- Characterisation of T-realisable frontier (combinatorial)
- Strategy for each trade-off
- Asymptotic (large T):
- Smooth limit frontier
- Smooth limit strategy
- For any $p \in[0,1]$ we can realise:

$$
\langle\sqrt{T(-\ln (p))}, \sqrt{T(-\ln (1-p))}\rangle
$$

but we can do better(!)

- For $K>2$ experts
- For every expert prior $\mathbb{P}(k)$, we can realise

$$
\langle\sqrt{2.6 T(-\ln \mathbb{P}(k))}\rangle_{k=1}^{K}
$$

using a recursive combination of 2-expert algorithms.

Absolute loss game

Each round $t \in\{1, \ldots, T\}$ the learner assigns a probability $p_{t} \in[0,1]$ to the next outcome being a 1 , after which the actual outcome $x_{t} \in\{0,1\}$ is revealed, and the learner suffers

$$
\text { absolute loss } \quad\left|p_{t}-x_{t}\right|
$$

The regret w.r.t. the strategy that always predicts $k \in\{0,1\}$ is

$$
R_{T}^{k}:=\sum_{t=1}^{T}\left(\left|p_{t}-x_{t}\right|-\left|k-x_{t}\right|\right)
$$

A candidate trade-off $\left\langle r_{0}, r_{1}\right\rangle \in \mathbb{R}^{2}$ is called T-realisable for the T-round absolute loss game if there is a strategy that keeps the regret w.r.t. each $k \in\{0,1\}$ below r_{k}, i.e. if

$$
\exists p_{1} \forall x_{1} \cdots \exists p_{T} \forall x_{T}: R_{T}^{0} \leq r_{0} \text { and } R_{T}^{1} \leq r_{1}
$$

We denote the set of all T-realisable trade-offs by \mathbb{G}_{T}.

The set \mathbb{G}_{T}, i.e. the T-realisable tradeoffs $\left\langle r_{0}, r_{1}\right\rangle$

Pareto Frontier and Optimal Strategy

Theorem
The Pareto frontier of \mathbb{G}_{T} is piece-wise linear with $T+1$ vertices:
$\left\langle f_{T}(i), f_{T}(T-i)\right\rangle \quad 0 \leq i \leq T \quad$ where $\quad f_{T}(i):=\sum_{j=0}^{i} j^{j-T}\binom{T-j-1}{T-i-1}$.
The optimal strategy at vertex i assigns to $x=1$ probability
$p_{T}(0):=0, \quad p_{T}(T):=1, \quad p_{T}(i):=\frac{f_{T-1}(i)-f_{T-1}(i-1)}{2} \quad 0<i<T$,
and it interpolates linearly in between consecutive vertices.

Asymptotic analysis

Idea: normalise and then make T large

Asymptotic analysis

Idea: normalise and then make T large

$$
\mathbb{G}:=\lim _{T \rightarrow \infty} \frac{\mathbb{G}_{T}}{\sqrt{T}} .
$$

Asymptotic plot (moderate)

Asymptotic plot (tail)

Asymptotic Pareto Frontier and Optimal Strategy

Theorem
The Pareto frontier of \mathbb{G} is the smooth curve

$$
\langle f(u), f(-u)\rangle \quad u \in \mathbb{R}, \quad \text { where } \quad f(u):=\int_{-\infty}^{u} \Phi(x) \mathrm{d} x,
$$

and $\Phi(u):=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{u} e^{-\frac{x^{2}}{2}} \mathrm{~d} x$ is the standard normal CDF. The optimal strategy converges to

$$
p(u)=\Phi(u) .
$$

Use of asymptotics

- Smooth formula easier to handle
- Allows us to appreciate that sqrt-min-log-prior tradeoffs are realisable with constant 1 (not $1 / \sqrt{2}$) ...
- ... but have suboptimal lower-order terms.
- Suggests smoothened algorithms

$K>2$ experts

Combine algorithm for $K=2$ into unbalanced binary tree.
Outermost algorithm combines expert with least prior vs rest
Gives us

$$
\sqrt{2.6 T(-\ln \mathbb{P}(k))}
$$

$K>2$ experts

Combine algorithm for $K=2$ into unbalanced binary tree.
Outermost algorithm combines expert with least prior vs rest Gives us

$$
\sqrt{2.6 T(-\ln \mathbb{P}(k))}
$$

But we would like to have the exact Pareto frontier.

Conclusion

- We need unfair regret bounds
- Reinterpret regret as a multi-criterion objective
- Exact Pareto frontier for $K=2$ experts
- with optimal algorithm
- And useful formula for asymptotic Pareto frontier
- with asymptotic algorithm
- Trick for $K>2$ experts

