The Pareto Regret Frontier

Wouter M. Koolen

- Get hold of a bunch of
 - ► trivial approaches ☺

- Get hold of a bunch of
 - ► trivial approaches ☺
 - models from literature ©

- Get hold of a bunch of
 - ► trivial approaches ☺
 - models from literature ©
 - ▶ students (\$)

- Get hold of a bunch of
 - ► trivial approaches ☺
 - models from literature ©
 - students (\$)
 - ► employees (\$\$)

- Get hold of a bunch of
 - ► trivial approaches ☺
 - models from literature ©
 - students (\$)
 - employees (\$\$)
 - ► companies (\$\$\$)

- Get hold of a bunch of
 - ► trivial approaches ☺
 - models from literature ©
 - students (\$)
 - employees (\$\$)
 - ► companies (\$\$\$)
 - ▶ ...

Want to solve a learning problem?

- Get hold of a bunch of
 - ► trivial approaches ☺
 - models from literature ©
 - students (\$)
 - employees (\$\$)
 - ► companies (\$\$\$)
 - ▶

Each "expert" implements a solution

- Get hold of a bunch of
 - ► trivial approaches ☺
 - models from literature ©
 - students (\$)
 - employees (\$\$)
 - companies (\$\$\$)
 - ▶
- Each "expert" implements a solution
- Use aggregation algorithm to combine solutions in production

- Get hold of a bunch of
 - ► trivial approaches ☺
 - models from literature ③
 - students (\$)
 - employees (\$\$)
 - companies (\$\$\$)
 - ▶
- Each "expert" implements a solution
- Use aggregation algorithm to combine solutions in production
- Profit!

That aggregation algorithm

T rounds, K experts

$$\underbrace{L_T - \min_{k} L_T^k}_{\text{regret}} \leq \sqrt{T/2 \ln K}$$

That aggregation algorithm

T rounds, K experts

$$\underbrace{L_T - \min_{k} L_T^k}_{\text{regret}} \leq \sqrt{T/2 \ln K}$$

What if

- Lots of experts? shotgun-style "throw in all you got"
- Special experts? company's current strategy

A vector $\langle r_1 \dots r_K \rangle$ is *T*-realisable if there is a strategy ensuring

$$L_T - L_T^k \leq r_k$$
 for each expert k

A vector $\langle r_1 \dots r_K \rangle$ is *T*-realisable if there is a strategy ensuring

$$L_T - L_T^k \leq r_k$$
 for each expert k

Suggestive: for every expert prior \mathbb{P} , the following is T-realisable:

$$\left\langle \sqrt{T/2\left(-\ln \mathbb{P}(k)\right)} \right\rangle_{k=1}^{K}$$
????

A vector $\langle r_1 \dots r_K \rangle$ is *T*-realisable if there is a strategy ensuring

$$L_T - L_T^k \leq r_k$$
 for each expert k

Suggestive: for every expert prior \mathbb{P} , the following is \mathcal{T} -realisable:

$$\left\langle \sqrt{T/2\left(-\ln \mathbb{P}(k)\right)} \right\rangle_{k=1}^{k}$$
????

but this is false

A vector $\langle r_1 \dots r_K \rangle$ is *T*-realisable if there is a strategy ensuring

$$L_T - L_T^k \leq r_k$$
 for each expert k

Suggestive: for every expert prior \mathbb{P} , the following is T-realisable:

$$\left\langle \sqrt{T/2\left(-\ln \mathbb{P}(k)\right)} \right\rangle_{k=1}^{k}$$
 ????

but this is false

So what can be realised?

Results in a nutshell

- Absolute loss (or K = 2 experts)
 - Exact results
 - Characterisation of *T*-realisable frontier (combinatorial)
 - Strategy for each trade-off

Results in a nutshell

- Absolute loss (or K = 2 experts)
 - Exact results
 - Characterisation of *T*-realisable frontier (combinatorial)
 - Strategy for each trade-off
 - ► Asymptotic (large *T*):
 - Smooth limit frontier
 - Smooth limit strategy
 - For any $p \in [0, 1]$ we can realise:

$$\left\langle \sqrt{T \left(-\ln(p)\right)}, \sqrt{T \left(-\ln(1-p)\right)} \right\rangle$$

but we can do better(!)

Results in a nutshell

- Absolute loss (or K = 2 experts)
 - Exact results
 - Characterisation of *T*-realisable frontier (combinatorial)
 - Strategy for each trade-off
 - ► Asymptotic (large *T*):
 - Smooth limit frontier
 - Smooth limit strategy
 - For any $p \in [0, 1]$ we can realise:

$$\left\langle \sqrt{T \left(-\ln(p)\right)}, \sqrt{T \left(-\ln(1-p)\right)} \right\rangle$$

but we can do better(!)

▶ For K > 2 experts

• For every expert prior $\mathbb{P}(k)$, we can realise

$$\left\langle \sqrt{2.6T\left(-\ln\mathbb{P}(k)\right)}\right\rangle_{k=1}^{K}$$

using a recursive combination of 2-expert algorithms.

Absolute loss game

Each round $t \in \{1, ..., T\}$ the learner assigns a probability $p_t \in [0, 1]$ to the next outcome being a 1, after which the actual outcome $x_t \in \{0, 1\}$ is revealed, and the learner suffers

absolute loss $|p_t - x_t|$.

The **regret** w.r.t. the strategy that always predicts $k \in \{0, 1\}$ is

$$R_T^{\mathbf{k}} \coloneqq \sum_{t=1}^T (|\mathbf{p}_t - \mathbf{x}_t| - |\mathbf{k} - \mathbf{x}_t|)$$

A candidate trade-off $\langle r_0, r_1 \rangle \in \mathbb{R}^2$ is called *T*-**realisable** for the *T*-round absolute loss game if there is a strategy that keeps the regret w.r.t. each $k \in \{0, 1\}$ below r_k , i.e. if

$$\exists p_1 \forall x_1 \cdots \exists p_T \forall x_T : R_T^0 \leq r_0 \text{ and } R_T^1 \leq r_1$$

We denote the set of all T-realisable trade-offs by \mathbb{G}_T .

The set \mathbb{G}_T , i.e. the *T*-realisable tradeoffs $\langle r_0, r_1 \rangle$

Theorem

The Pareto frontier of \mathbb{G}_T is piece-wise linear with T + 1 vertices:

$$\langle f_{\mathcal{T}}(i), f_{\mathcal{T}}(\mathcal{T}-i) \rangle$$
 $0 \leq i \leq \mathcal{T}$ where $f_{\mathcal{T}}(i) := \sum_{j=0}^{i} j 2^{j-\mathcal{T}} {\binom{\mathcal{T}-j-1}{\mathcal{T}-i-1}}.$

The optimal strategy at vertex *i* assigns to x = 1 probability

$$p_T(0) \coloneqq 0, \quad p_T(T) \coloneqq 1, \qquad p_T(i) \coloneqq \frac{f_{T-1}(i) - f_{T-1}(i-1)}{2} \quad 0 < i < T,$$

and it interpolates linearly in between consecutive vertices.

Asymptotic analysis

Idea: normalise and then make T large

Asymptotic analysis

Idea: normalise and then make T large

Asymptotic plot (moderate)

Asymptotic plot (tail)

Asymptotic Pareto Frontier and Optimal Strategy

Theorem The Pareto frontier of $\mathbb G$ is the smooth curve

$$\langle f(u), f(-u) \rangle$$
 $u \in \mathbb{R}$, where $f(u) := \int_{-\infty}^{u} \Phi(x) dx$,

and $\Phi(u)\coloneqq \frac{1}{\sqrt{2\pi}}\int_{-\infty}^u e^{-\frac{x^2}{2}}\,dx$ is the standard normal CDF . The optimal strategy converges to

$$p(u) = \Phi(u).$$

Use of asymptotics

- Smooth formula easier to handle
- ► Allows us to appreciate that sqrt-min-log-prior tradeoffs are realisable with constant 1 (not 1/√2)...
- ... but have suboptimal lower-order terms.
- Suggests smoothened algorithms

K > 2 experts

Combine algorithm for K = 2 into unbalanced binary tree. Outermost algorithm combines expert with least prior vs rest Gives us

$$\sqrt{2.6T(-\ln \mathbb{P}(k))}$$

K > 2 experts

Combine algorithm for K = 2 into unbalanced binary tree. Outermost algorithm combines expert with least prior vs rest Gives us

$$\sqrt{2.6T(-\ln \mathbb{P}(k))}$$

But we would like to have the exact Pareto frontier.

Conclusion

- We need unfair regret bounds
- Reinterpret regret as a multi-criterion objective
- Exact Pareto frontier for K = 2 experts
- with optimal algorithm
- And useful formula for asymptotic Pareto frontier
- with asymptotic algorithm
- Trick for K > 2 experts