Sequential Test for the Lowest Mean From Thompson to Murphy Sampling

Emilie Kaufmann

Wouter M. Koolen

Aurélien Garivier

CWI/INRIA workshop Paris, Wednesday 26th September, 2018

Why are we here?

Inala-

Kaufmann

Grünwald

Koolen

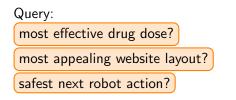
⁶Making **Probably Approximately Correct** Learning Safe, Active, Sequential, Structure-aware, Ideal, Efficient

2 Lower Bounds

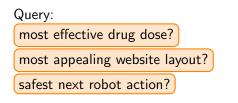
Results

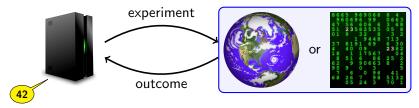
- Sampling Rules
- Confidence Intervals

Grand Goal: Interactive Machine Learning



Grand Goal: Interactive Machine Learning

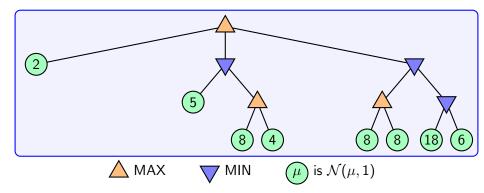




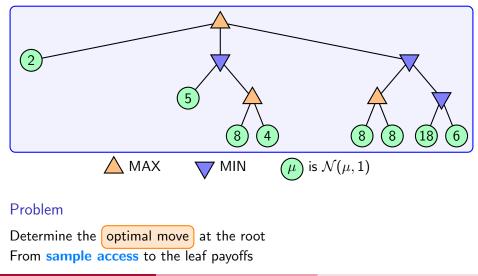
Main scientific questions

- Efficient systems
- Sample complexity as function of query and environment

Challenge Environment: Stochastic Game Tree Search



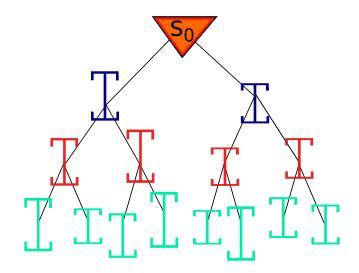
Challenge Environment: Stochastic Game Tree Search



Kaufmann, Koolen, Garivier

Sequential Test for the Lowest Mean

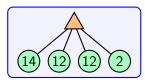
Flashback to Amsterdam Workshop [KK, NIPS'17]

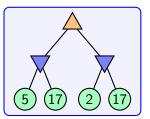


Revisit our Motivating Questions

- Design of pure exploration algorithms for complex queries?
 Monte Carlo Tree Search
- Valid anytime confidence intervals for derived quantities?
 - maximum/minimum

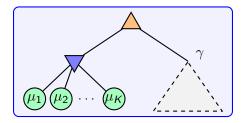
Simplify





Best Arm Identification [Garivier and Kaufmann, 2016] Solved Depth 2 [Garivier, Kaufmann, and Koolen, 2016] Open

Simple Instance: Minimum Threshold Identification



Fix threshold γ .

$$\mu^* := \min_i \mu_i \leq \gamma?$$

For
$$t = 1, \ldots, \tau$$

- Pick leaf A_t
- See $X_t \sim \mu_{A_t}$

Recommend $\hat{m} \in \{<,>\}$

Goal: fixed confidence $\mathbb{P}_{\mu} \{ \text{error} \} < \delta$ and small sample complexity $\mathbb{E}_{\mu}[\tau]$

Lower Bound

Generic lower bound [Castro, 2014, Garivier and Kaufmann, 2016] shows sample complexity for any δ -correct algorithm is at least

 $\mathbb{E}_{\mu}[\tau] \geq T^{*}(\mu) \ln \frac{1}{\delta}.$

Lower Bound

Generic lower bound [Castro, 2014, Garivier and Kaufmann, 2016] shows sample complexity for any δ -correct algorithm is at least

$$\mathbb{E}_{oldsymbol{\mu}}[au] \ \geq \ T^*(oldsymbol{\mu}) \ln rac{1}{\delta}.$$

For our problem the characteristic time and oracle weights are

$$T^{*}(\boldsymbol{\mu}) = \begin{cases} \frac{1}{d(\mu^{*},\gamma)} & \mu^{*} < \gamma, \\ \sum_{a} \frac{1}{d(\mu_{a},\gamma)} & \mu^{*} > \gamma, \end{cases} \quad \boldsymbol{w}^{*}_{a}(\boldsymbol{\mu}) = \begin{cases} \mathbf{1}_{a=a^{*}} & \mu^{*} < \gamma, \\ \frac{1}{d(\mu_{a},\gamma)} & \frac{1}{\sum_{j} \frac{1}{d(\mu_{j},\gamma)}} & \mu^{*} > \gamma. \end{cases}$$

Lower Bound

Generic lower bound [Castro, 2014, Garivier and Kaufmann, 2016] shows sample complexity for any δ -correct algorithm is at least

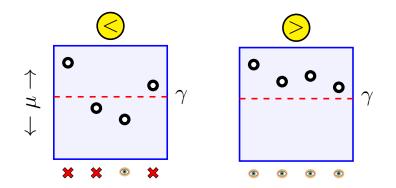
$$\mathbb{E}_{oldsymbol{\mu}}[au] \ \geq \ T^*(oldsymbol{\mu}) \ln rac{1}{\delta}.$$

For our problem the characteristic time and oracle weights are

$$T^{*}(\boldsymbol{\mu}) = \begin{cases} \frac{1}{d(\mu^{*},\gamma)} & \mu^{*} < \gamma, \\ \sum_{a} \frac{1}{d(\mu_{a},\gamma)} & \mu^{*} > \gamma, \end{cases} \quad \boldsymbol{w}^{*}_{a}(\boldsymbol{\mu}) = \begin{cases} \mathbf{1}_{a=a^{*}} & \mu^{*} < \gamma, \\ \frac{1}{d(\mu_{a},\gamma)} & \frac{1}{\sum_{j} \frac{1}{d(\mu_{j},\gamma)}} & \mu^{*} > \gamma. \end{cases}$$

Lower-order refinements with Rémy Degenne (postdoc @ CWI ML)

Dichotomous Oracle Behaviour! Sampling Rule?



Sampling Rules

- Lower Confidence Bounds Play $A_t = \arg \min_a \operatorname{LCB}_a(t)$
- **Thompson Sampling** (Π_{t-1} is posterior after t-1 rounds) Sample $\theta \sim \Pi_{t-1}$, then play $A_t = \arg \min_a \theta_a$.
- Murphy Sampling condition on low minimum mean Sample $\theta \sim \prod_{t=1} (\cdot |\min_a \theta_a < \gamma)$, then play $A_t = \arg \min_a \theta_a$.

Intuition for Murphy Sampling

- When $\mu^* < \gamma$ conditioning is immaterial: $\theta \approx \mu$ and MS \equiv TS.
- When μ* > γ conditioning results in θ ≈ (μ₁,..., γ,..., μ_K). Index a lowered to γ with probability ∝ 1/d(μ₂,γ) [Russo, 2016].

Main Result 1 : Murphy Sampling Rule [KKG, NIPS'18]

Theorem

Asymptotic optimality: $N_{\mathsf{a}}(t)/t o w^*_{\mathsf{a}}(\mu)$ for all μ

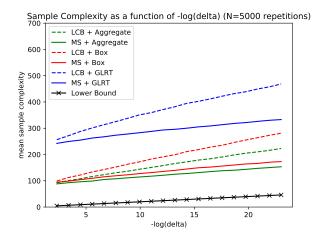
Sampling rule	\leq	\bigcirc
Thompson Sampling	\checkmark	×
Lower Confidence Bounds	×	\checkmark
Murphy Sampling	\checkmark	\checkmark

Lemma

Any anytime sampling strategy $(A_t)_t$ ensuring $\frac{N_t}{t} \to w^*(\mu)$ and good stopping rule τ_{δ} guarantee $\limsup_{\delta \to 0} \frac{\tau_{\delta}}{\ln \frac{1}{\lambda}} \leq T^*(\mu)$.

Numerical Results: sample complexity on <

 $\mu = \mathsf{linspace}(-1, 1, 10) \in \mathcal{H}_{<}$

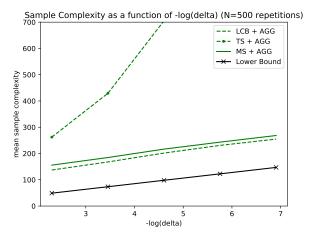


Sample complexity $\mathbb{E}[\tau_{\delta}]$ as a function of $\ln(1/\delta)$. Throughout $\gamma = 0$.

Kaufmann, Koolen, Garivie

Numerical Results: sample complexity on >

 $oldsymbol{\mu} = \mathsf{linspace}(1/2, 1, 5) \in \mathcal{H}_{>}$

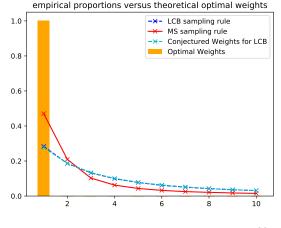


Sample complexity $\mathbb{E}[\tau_{\delta}]$ as a function of $\ln(1/\delta)$. Throughout $\gamma = 0$.

Kaufmann, Koolen, Garivier

Numerical Results: proportions on <

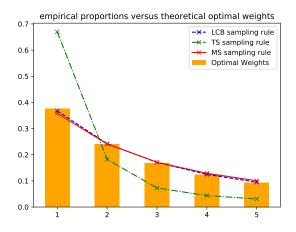
 $\boldsymbol{\mu} = \mathsf{linspace}(-1,1,10) \in \mathcal{H}_{<}$



Sampling proportions vs oracle, $\delta = e^{-23}$.

Numerical Results: proportions on >

 $\boldsymbol{\mu} = \mathsf{linspace}(1/2, 1, 5) \in \mathcal{H}_{>}$



Sampling proportions vs oracle, $\delta = e^{-7}$.

Kaufmann, Koolen, Garivier

Sequential Test for the Lowest Mean

Confidence Intervals

(Non-Asymptotic) Adaptivity

?

Confidence Interval for Minimum

For **LCB** we adopt the obvious $LCB_{min}(t) = min_a LCB_a(t)$. For **UCB** we investigate three approaches:

- **Box**: Straightforward idea: $UCB_{min}(t) = min_a UCB_a(t)$.
- **GLRT**: New sum-of-deviations confidence bound.
- Agg: Pool samples from multiple arms. Upper bound on any average is upper bound on minimum. Biased but narrower.

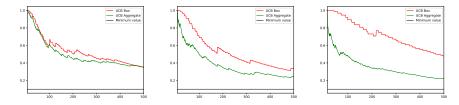
Main Result 2: Deviation Inequalities [KKG, NIPS'18]

We identify a **threshold function** T(x) = x + o(x) such that for every fixed subset $S \subseteq [K]$, w.h.p. $\geq 1 - \delta$,

$$\forall t : \left[N_{\mathcal{S}}(t)d^{+}(\hat{\mu}_{\mathcal{S}}(t), \min_{a \in \mathcal{S}} \mu_{a}) - \ln \ln N_{\mathcal{S}}(t) \right]^{+} \leq T \left(\ln \frac{1}{\delta} \right),$$
$$\forall t : \sum_{a \in \mathcal{S}} \left[N_{a}(t)d^{+}(\hat{\mu}_{a}(t), \min_{a \in \mathcal{S}} \mu_{a}) - \ln \ln N_{a}(t) \right]^{+} \leq |\mathcal{S}|T\left(\frac{\ln \frac{1}{\delta}}{|\mathcal{S}|}\right).$$

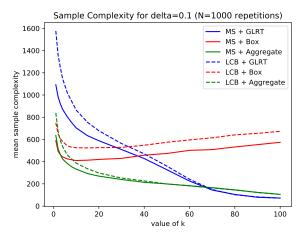
Weighted union bound over subsets learns useful low-mean arms.

Numerical Results



UCB for minimum: Agg dominates Box with 1, 3 and 10 low arms.

Numerical Results



Agg **beats** Box and GLRT in adapting to the number k of low arms. Here $\mu_a \in \{-1, 0\}$ and $\gamma = 0$.

What's Next

- Deep trees Extension to **regular** depth 2 by Federico Girotti (MSc @ U. Milan)
- Adaptive tree expansion
- Foundation for MCTS and RL

What's Next

- Deep trees Extension to **regular** depth 2 by Federico Girotti (MSc @ U. Milan)
- Adaptive tree expansion
- Foundation for MCTS and RL

Thank you!