MetaGrad: Faster Convergence **Without Curvature** in Online Convex Optimization

Wouter M. Koolen Tim van Erven

Inria Lille Friday 15th April, 2016

- Online Convex Optimization
- Learning the Learning rate
- Second-order (variance) bounds (individual sequence)
- Fast rates without curvature

Online Convex Optimization

A New Type of Guarantee

Fast Rates

MetaGrad Algorithm

Fundamental Learning Model: Online Convex Optimization

- ln round $t = 1, 2, \ldots$
 - Learner predicts w_t (from unit ball)
 - Encounter convex loss function $f_t(u): \mathbb{R}^d o \mathbb{R}$

- Learner
 - observes gradient $g_t \coloneqq
 abla f_t(w_t)$ (from unit ball)
 - incurs loss $f_t(w_t)$

Fundamental Learning Model: Online Convex Optimization

In round
$$t = 1, 2, \ldots$$

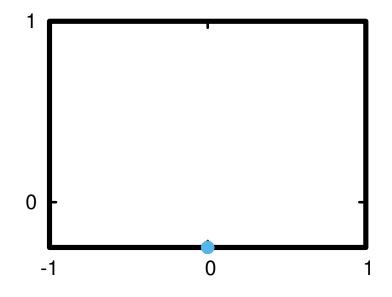
- Learner predicts w_t (from unit ball)
- Encounter convex loss function $f_t(u): \mathbb{R}^d o \mathbb{R}$

- Learner
 - observes gradient ${m g}_t\coloneqq
 abla f_t({m w}_t)$ (from unit ball)
 - incurs loss f_t(w_t)
- The goal is to have small regret

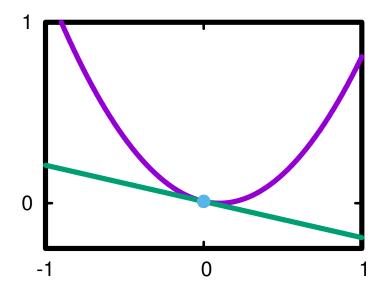
$$R_T^u := \underbrace{\sum_{t=1}^T f_t(w_t)}_{\text{Learner}} - \underbrace{\sum_{t=1}^T f_t(u)}_{\text{Point } u}$$

with respect to every point u.

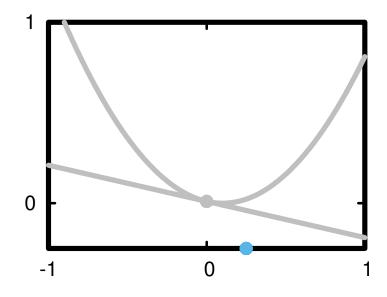
Round 1: Learner plays $w_1 = 0$



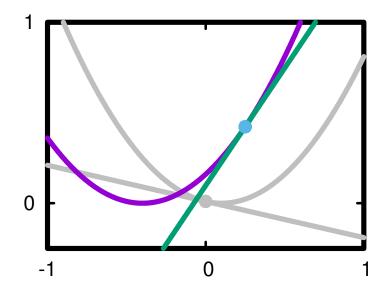
Round 1: Learner incurs $f_1(w_1)$ and sees $g_1 = \nabla f_1(w_1)$



Round 2: Learner plays $w_1 = 1/4$

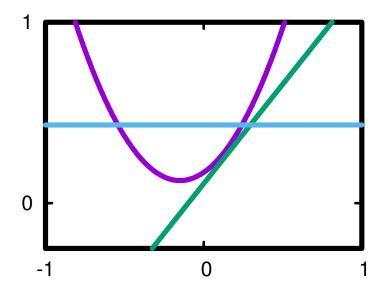


Round 2: Learner incurs $f_2(w_2)$ and sees $g_2 = \nabla f_2(w_2)$



. . .

Evaluate Learner using **regret**: $R_T^u = \sum_{t=1}^T (f_t(w_t) - f_t(u))$



State of the Art

Online gradient descent

$$oldsymbol{w}_{t+1} \;=\; oldsymbol{w}_t - oldsymbol{\eta} oldsymbol{g}_t$$

recall $\boldsymbol{g}_t =
abla f_t(\boldsymbol{w}_t)$

State of the Art

Online gradient descent

$$oldsymbol{w}_{t+1} \;=\; oldsymbol{w}_t - oldsymbol{\eta} oldsymbol{g}_t$$

recall $\boldsymbol{g}_t =
abla f_t(\boldsymbol{w}_t)$

OGD bound: After T rounds,

$$R_T^{\boldsymbol{u}} \leq O\left(\sqrt{\sum_{t=1}^T \lVert \boldsymbol{g}_t
Vert^2}
ight)$$

for all \boldsymbol{u} with $\|\boldsymbol{u}\| \leq 1$.

Bounds Reveal Our Dearest Hopes

Always have worst-case guarantee

$$R_T^{\boldsymbol{u}} \leq O\left(\sqrt{\sum_{t=1}^T \|\boldsymbol{g}_t\|^2}
ight) \leq O(\sqrt{T}).$$

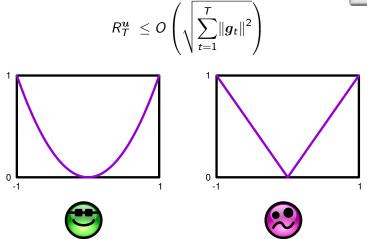
Yet bound says we might get lucky

For smooth functions f_t with common optimum $m{u}^*$, as $m{w}_t o m{u}^*$, we have $m{g}_t o m{0}$, and

$$\sqrt{\sum_{t=1}^{\mathcal{T}} \lVert oldsymbol{g}_t
Vert^2} \ \ll \ \sqrt{\mathcal{T}}$$

grows much slower than \sqrt{T} .

What We Hope Happens



Can We Do Better?

No in general: matching lower bound.

 $R_T^u \geq \Omega(\sqrt{T})$

Yes, with curvature:

 $R_T^u \leq O(\ln T)$

• Strongly convex:
$$I \preceq
abla^2 f(u)$$
, e.g.

$$f_t(\boldsymbol{u}) = \|\boldsymbol{u} - \boldsymbol{y}_t\|^2$$

 \Rightarrow gradient descent with small η

• Exp-concave: $\nabla f(u) \nabla f(u)^{\intercal} \preceq \nabla^2 f(u)$, e.g.

$$f_t(u) ~=~ -\ln\left(1+m{y}_t^{\intercal}u
ight)$$

 \Rightarrow Online Newton Step

But do we really need curvature?

This talk: no, **stability** is enough.

New algorithm MetaGrad: Separate learning rate η for each point u

Online Convex Optimization

A New Type of Guarantee

Fast Rates

MetaGrad Algorithm

Refined Bound

Recall bound for gradient descent:

$$R_T^{\boldsymbol{u}} \leq O\left(\sqrt{\sum_{t=1}^T \lVert \boldsymbol{g}_t
Vert^2}
ight)$$

New bound for MetaGrad:

$$R_T^{\boldsymbol{u}} \leq O\left(\sqrt{V_T^{\boldsymbol{u}} d \ln T}\right) \quad \text{where} \quad V_T^{\boldsymbol{u}} \coloneqq \sum_{t=1}^T \left((\boldsymbol{w}_t - \boldsymbol{u})^{\mathsf{T}} \boldsymbol{g}_t\right)^2$$

Data-dependent. Whoa! Ouroboric.

Always improvement:

$$\left((\boldsymbol{w}_t - \boldsymbol{u})^{\intercal} \boldsymbol{g}_t
ight)^2 \leq \|\boldsymbol{w}_t - \boldsymbol{u}\|^2 \|\boldsymbol{g}_t\|^2$$

Now What We Hope Happens

$$R_T^{\boldsymbol{u}} \leq O\left(\sqrt{\sum_{t=1}^T ((\boldsymbol{w}_t - \boldsymbol{u})^{\mathsf{T}}\boldsymbol{g}_t)^2}\right)$$

Online Convex Optimization

A New Type of Guarantee

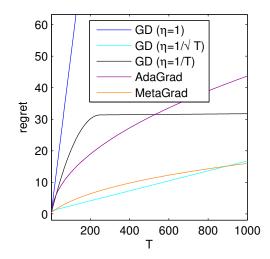
Fast Rates

MetaGrad Algorithm

Does it Really Work?

Offline optimization (fixed function):

$$f_t(u) = |u-1/4|$$



The "Fast Rates" Pipeline

Combine

refined individual-sequence regret bound

$$R_T^u \leq \sqrt{V_T^u d \ln T} \quad \forall u$$

Special-purpose argument that for best u^*

$$\boxed{V_T^{\boldsymbol{u}^*} \leq R_T^{\boldsymbol{u}^*}}$$

Profit!

$$R_T^{\boldsymbol{u}^*} \leq \sqrt{R_T^{\boldsymbol{u}^*} d \ln T}$$
 so $R_T^{\boldsymbol{u}^*} \leq d \ln T$

Significant Improvement: Fixed Function

Any fixed $f_t(u) = f(u)$. Let $u^* = \arg \min_u f(u)$ be the offline minimiser.

Crux:
$$(\boldsymbol{w}_t - \boldsymbol{u}^*)^{\intercal} \boldsymbol{g}_t \in [0, 2].$$

Now from the regret bound

$$R_T^{oldsymbol{u}^*} \leq \sum_{t=1}^T (oldsymbol{w}_t - oldsymbol{u}^*)^\intercal oldsymbol{g}_t \leq \sqrt{V_T^{oldsymbol{u}^*} d \ln T}$$

and special-purpose observation

$$V_T^{{m u}^*} = \sum_{t=1}^T \left(({m u}^* - {m w}_t)^{\mathsf{T}} {m g}_t
ight)^2 \le 2 \sum_{t=1}^T ({m w}_t - {m u}^*)^{\mathsf{T}} {m g}_t$$

we can solve for $V_T^{{m u}^*}$ to find $V_T^{{m u}^*} \leq d \ln T$ and hence

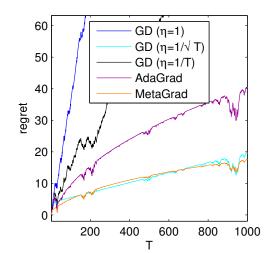
$$\mathsf{R}_T^{oldsymbol{u}^*}~\leq~\sqrt{2}d\,{
m ln}~7$$

Does It Really Actually Work?

Stochastic optimization:

$$f_t(u) = |u - x_t|$$

where $x_t = \pm \frac{1}{2}$ i.i.d. with probability 0.4 and 0.6.

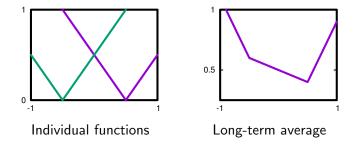


What's Going On, Really?

Stochastic optimization:

$$f_t(u) = |u - x_t|$$

where $x_t = \pm \frac{1}{2}$ i.i.d. with probability 0.4 and 0.6.



Stable minimum easy to converge to

Significant Improvement: Stochastic Case Consider i.i.d.

$$f \sim \mathbb{P}$$
 with $u^* = rgmin \mathop{\mathbb{E}}_{u}[f(u)]$

Condition: there is a c > 0 such that

 $\nabla \forall m{w}: (m{w}-m{u}^*)^\intercal \, \mathbb{E}\left[
abla f(m{w})
abla f(m{w})^\intercal
ight] (m{w}-m{u}^*) \ \leq \ m{c}(m{w}-m{u}^*)^\intercal \, \mathbb{E}\left[
abla f(m{w})
ight]$

Now from the special-case condition

$$\mathbb{E}[V_T^{oldsymbol{u}^*}] \ \le \ c \, \mathbb{E}\left[\sum_{t=1}^T (oldsymbol{w}_t - oldsymbol{u}^*)^\intercal
abla f(oldsymbol{w}_t)
ight]$$

and by the generic regret bound, in expectation,

$$\mathbb{E}[R_T^{\boldsymbol{u}^*}] \leq \mathbb{E}\left[\sum_{t=1}^T (\boldsymbol{w}_t - \boldsymbol{u}^*)^{\mathsf{T}} \nabla f(\boldsymbol{w}_t)\right] \leq \mathbb{E}\left[\sqrt{V_T^{\boldsymbol{u}^*} d \ln T}\right]$$

and by Jensen's inequality $\mathbb{E}\left[\sqrt{V_T^{\boldsymbol{u}^*}}\right] \leq \sqrt{\mathbb{E}\left[V_T^{\boldsymbol{u}^*}\right]}$, so that
 $\mathbb{E}[R_T^{\boldsymbol{u}^*}] \leq \sqrt{c} d \ln T$

Outline

Online Convex Optimization

A New Type of Guarantee

Fast Rates

MetaGrad Algorithm

Our Approach in a Nutshell

- 1. Replace actual loss $f_t(u)$ by surrogate loss $\ell_t^{\eta}(u)$
 - parametrised by learning rate η
 - \blacktriangleright exp-concave in u
 - So can get good bound for surrogate regret
- 2. Exponentially spaced grid $\eta_1, \eta_2, \ldots, \eta_{\log(T)}$ $(\eta_i = 2^{-i})$.
- 3. Off-the-shelf exp-concave **Slave** for grid point η_i predicts

$$w_1^{\eta_i}, w_2^{\eta_i}, \ldots$$

4. At each round t, Master aggregates $w_t^{\eta_1}, w_t^{\eta_2}, \ldots$ into w_t .

Surrogate Loss

Real loss

$$f_t(\boldsymbol{u}) ~\leq~ f_t(\boldsymbol{w}_t) + (\boldsymbol{u} - \boldsymbol{w}_t)^{\intercal} \boldsymbol{g}_t$$

Surrogate loss

$$\ell^\eta_t(u) \ \coloneqq \ \eta(u-w_t)^{\intercal} g_t + (\eta(u-w_t)^{\intercal} g_t)^2$$

Exp-concave! In particular:

$$e^{-\ell_t^{\boldsymbol{\eta}}(\boldsymbol{u})} \leq 1 + \boldsymbol{\eta}(\boldsymbol{w}_t - \boldsymbol{u})^{\mathsf{T}} \boldsymbol{g}_t.$$

Excellent bound $O(\ln T)$ for wrong loss.

MetaGrad Slave

 η -Slave (variant of Online Newton Step) predicts

$$w_{t+1}^{\eta} ~=~ w_t^{\eta} - \eta \Sigma_{t+1}^{\eta} g_t$$

where the covariance matrix is given by

$$\boldsymbol{\Sigma}_{t+1}^{\boldsymbol{\eta}} = \left(\frac{1}{4}\boldsymbol{I} + 2\boldsymbol{\eta}^2\sum_{s=1}^{t}\boldsymbol{g}_s\boldsymbol{g}_s^{\mathsf{T}}\right)^{-1}$$

 η -Slave guarantees

$$\begin{split} \sum_{t=1}^T \bigl(\ell_t^{\boldsymbol{\eta}}(\boldsymbol{w}_t^{\boldsymbol{\eta}}) - \ell_t^{\boldsymbol{\eta}}(\boldsymbol{u})\bigr) &\leq \frac{1}{8} \|\boldsymbol{u}\|^2 + \frac{1}{2} \ln \det \left(\boldsymbol{I} + 8\boldsymbol{\eta}^2 \sum_{t=1}^T \boldsymbol{g}_t \boldsymbol{g}_t^{\mathsf{T}}\right) \\ &\leq O(d \ln \mathcal{T}) \quad \forall \boldsymbol{u} \end{split}$$

MetaGrad Master

Input: Grid points $\eta_i = 2^{-i}$ with weights $\pi_i = \frac{1}{i(i+1)}$. Goal: aggregate $w_t^{\eta_1}, w_t^{\eta_2}, \ldots$

Idea: Potential

$$\Phi_t := \sum_i \pi_i e^{-\sum_{s=1}^t \ell_s^{\eta_i}(w_s^{\eta_i})}.$$

Two steps:

- Find predictions w_t that ensure $1 \ge \Phi_1 \ge \Phi_2 \ge \ldots$
- Derive regret bound from $1 \ge \Phi_T$.

MetaGrad Master, Potential Decreases

Tilted exponentially weighted average

$$w_{t+1} = \frac{\sum_{i} \pi_{i} e^{-\sum_{s=1}^{t} \ell_{s}^{\eta_{i}}(w_{s}^{\eta_{i}})} \eta_{i} w_{t+1}^{\eta_{i}}}{\sum_{i} \pi_{i} e^{-\sum_{s=1}^{t} \ell_{s}^{\eta_{i}}(w_{s}^{\eta_{i}})} \eta_{i}}$$

ensures potential shrinks:

$$\begin{split} \Phi_{t+1} - \Phi_t &= \sum_{i} \pi_i e^{-\sum_{s=1}^t \ell_s^{\eta_i}(w_s^{\eta_i})} \left(e^{-\ell_{t+1}^{\eta_i}(w_{t+1}^{\eta_i})} - 1 \right) \\ & \leq \sum_{i} \pi_i e^{-\sum_{s=1}^t \ell_s^{\eta_i}(w_s^{\eta_i})} \eta_i (w_{t+1} - w_{t+1}^{\eta_i})^{\mathsf{T}} g_{t+1} \overset{\text{weights}}{=} 0 \end{split}$$

and hence $\Phi_t \leq 1$.

MetaGrad Master, Small Potential is Good

The Master achieves for all *t*:

$$1 \geq \Phi_t = \sum_{i} \pi_i e^{-\sum_{s=1}^t \ell_s^{\eta_i}(w_s^{\eta_i})}.$$

It follows that

$$\sum_{t=1}^T \left(0 - \ell_t^{oldsymbol{\eta}_i}(oldsymbol{w}_t^{oldsymbol{\eta}_i})
ight) \ \le \ -\ln \pi_i \qquad orall i \ ext{in grid}$$

(Master has zero surrogate loss)

MetaGrad Analysis

Now combine the Master and Slave guarantee. For **each** grid point η and comparator u

$$\sum_{t=1}^{T} \left(0 - \ell_t^{\eta}(\boldsymbol{w}_t^{\eta}) \right) \leq -\ln \pi_i \leq \ln \ln 7$$
$$\sum_{t=1}^{T} \left(\ell_t^{\eta}(\boldsymbol{w}_t^{\eta}) - \ell_t^{\eta}(\boldsymbol{u}) \right) \leq O(d \ln 7)$$

SO

$$\sum_{t=1}^T (0-\ell_t^{\eta}(u)) \leq O(d \ln T).$$

Unpacking $\ell^\eta_t(u) = \eta(u-w_t)^\intercal g_t + (\eta(u-w_t)^\intercal g_t)^2$ yields

 $\eta R_T^u \leq \eta^2 V_T^u + O(d \ln T).$

MetaGrad Analysis (ctd.)

Reorganise the bound to:

$$R_T^{oldsymbol{u}} \ \le \ oldsymbol{\eta} V_T^{oldsymbol{u}} + rac{O(d \ln T)}{\eta}$$

Now pick the best grid point

$$\hat{\eta} = \sqrt{\frac{O(d \ln T)}{V_T^u}}$$

to find

$$R_T^u \leq O\left(\sqrt{V_T^u d \ln T}\right)$$

of course we need a grid point close to $\hat{\eta}$ and we need to deal with off-grid $\hat{\eta} \gg 1$ and $\hat{\eta} \ll \frac{1}{\sqrt{T}}$.

MetaGrad Outlook

- Run-time O(d²) per round
- Projections (avoid O(d³) per round!)
- We design and analyze two versions of Slave
 - Full covariance (quadratic)
 - Diagonal approximation (linear)
- Very welcome to discuss further

MetaGrad Outlook

- Run-time $O(d^2)$ per round
- Projections (avoid O(d³) per round!)
- We design and analyze two versions of Slave
 - Full covariance (quadratic)
 - Diagonal approximation (linear)
- Very welcome to discuss further

Learn more:

- Paper submitted to COLT 2016, preprint available
- Code is available

http://bitbucket.org/wmkoolen/metagrad

Experiments coming soon.

http://blog.wouterkoolen.info

Low regret through stability, even without curvature.

- New MetaGrad algorithm.
- Hierarchical Master-Slave construction.
- Learns the learning rate.
- Refined (adaptive) regret bound.
- Stochastic condition for logarithmic regret (fast rates)

Thank you!