
Learning the Learning Rate
for Prediction with Expert Advice

Wouter M. Koolen Tim van Erven Peter D. Grünwald

Lorentz Workshop Leiden, Thursday 20th November, 2014



Online Learning Algorithms

?

Work in

Practice

TheoreticalPerformance
Guarantees



Learning as a Game

0 (perfect)

minimax

high (bad)

re
gr

et

problem instances

worst-case safe algorithm

special-purpose algorithm
?



Practice is not Adversarial
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Fundamental model for learning: Hedge setting

I K experts

. . .

I In round t = 1, 2, . . .
I Learner plays distribution wt = (w1

t , . . . ,w
K
t ) on experts

I Adversary reveals expert losses `t = (`1
t , . . . , `

K
t ) ∈ [0, 1]K

I Learner incurs loss wᵀ
t `t

I Evaluation criterion is the regret:

RT :=
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t=1
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Canonical algorithm for the Hedge setting

Hedge algorithm with learning rate η:

wk
t :=

e−ηL
k
t−1∑

k e
−ηLkt−1

where Lkt−1 =
t−1∑
s=1

`ks .

The tuning η = ηworst case :=
√

8 lnK
T results in

RT ≤
√
T/2 lnK

and we have matching lower bounds.

Case closed?
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Gap between Theory and Practice

Practitioners report that tuning η � ηworst case works much
better. [DGGS13]

Series of worst-case data-dependent improvements

RT ≤
√

T/2 lnK T L∗T VT ∆T

and extension to scenarios where Follow-the-Leader (η =∞)
shines (IID losses)

RT ≤ min
{
Rworst case

T ,R∞T
}

Case closed?
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Menu

Grand goal: be almost as good as best learning rate η

RT ≈ min
η
RηT .

I Example problematic data

I Key ideas
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LLR algorithm in a nutshell

LLR

I maintains a finite grid η1, . . . , ηimax , ηah

I cycles over the grid. For each ηi :
I Play the ηi Hedge weights
I Evaluate ηi by its mixability gap
I Until its budget doubled

I adds next lower grid point on demand

Resources:

I Time: O(K ) per round (same as Hedge).

I Memory: O(lnT )→ O(1).
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Unavoidable notation

ht = wᵀ
t `t , (Hedge loss)

mt =
−1

η
ln
∑
k

wk
t e
−η`kt , (Mix loss)

δt = ht −mt . (Mixability gap)

And capitals denote cumulatives

∆T =
T∑
t=1

δt , . . .
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Key Idea 1: Monotone regret lower bound

Problem: Regret RηT is not increasing with T .

But we have a monotone lower bound:

RηT ≥ ∆η
T

Proof:

Rηt = HT − L∗T = HT −MT︸ ︷︷ ︸
mixability gap

+ MT − L∗T︸ ︷︷ ︸
mix loss regret

Now use

MT =
−1

η
ln

(∑
k

1

K
e−ηL

k
T

)
∈ L∗T +

[
0,

lnK

η

]
Upshot: measure quality of each η using cumulative mixability gap.



Key Idea 2: Grid of η suffices

For γ ≥ 1:
δγηt ≤ γe(γ−1)(lnK+η)δηt

I.e. δηt cannot be much better than δγηt .

Exponentially spaced grid of η suffices.



Key Idea 3: Lowest η is “AdaHedge”

AdaHedge:

ηah
t :=

lnK

∆ah
t−1

Result:

RT ≤
imax∑
i=1

∆i
T + c∆ah

T



Key Idea 4: Budgeted timesharing

Active grid points

η1, η2, . . . , ηimax , ηah
t

with (heavy-tailed) prior distribution

π1, π2, . . . , πimax , πah

LLR maintains invariant:

∆1
T

π1
≈

∆2
T

π2
≈ . . . ≈

∆
imax

T

πimax
≈

∆ah
T

πah

Run each ηi in turn until its cumulative mixability gap
∆i

T

πi doubled.

imax∑
i=1

∆i
T =

imax∑
i=1

πi
∆i

T

πi
≈

∆j
T

πj

imax∑
i=1

πi ≤
∆j

T

πj



Putting it all together

Two bounds:

RT ≤ Õ


lnK ln 1

ηR
η
T for all η ∈ [ηah

t∗ , 1]

R∞T



Run on synthetic data (T = 2 · 107)
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Worst−case bound and worst−case η
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Conclusion

I Higher learning rates often achieve lower regret
I In practice
I Constructed data

I Learning the Learning Rate (LLR) algorithm
I Performance close to best learning rate in hindsight

Open problems:

I LLR as PoC
Can we do it simpler, prettier, smoother and tighter?
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Thank you!
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