Switching Investments

Wouter M. Koolen and Steven de Rooij

October 6, 2010

What We Do

All About A Line
Basic Investment
Strategies
Hedging
Price Switched
Strategies
More Price
Switching

What We Actually Do

What We Do

All About A Line

What We Do

All About A Line

Basic Investment Strategies

Hedging

Price Switched

Strategies

More Price

Switching

What We Actually Do

All About A Line

What We Do

All About A Line

Basic Investment Strategies

Hedging

Price Switched

Strategies

More Price

Switching

What We Actually Do

Vertical axis:

- ✓ Prediction with expert advice: $L_1(x_{1:t}) L_2(x_{1:t})$
- ✓ Hypothesis testing: $\log(P_1(x_{1:t})/P_0(x_{1:t}))$
- ✓ The logarithm of a stock price.

All About A Line

What We Do

All About A Line

Basic Investment Strategies

Hedging

Price Switched

Strategies

More Price

Switching

What We Actually Do

Vertical axis:

- ✓ Prediction with expert advice: $L_1(x_{1:t}) L_2(x_{1:t})$
- ✓ Hypothesis testing: $\log(P_1(x_{1:t})/P_0(x_{1:t}))$
- ✓ The logarithm of a stock price.

Goal: predict whether the line will go up or down.

Basic Investment Strategies

What We Do

All About A Line Basic Investment Strategies

Hedging
Price Switched
Strategies
More Price
Switching

What We Actually Do

A basic investment strategy σ_t is to sell at a predetermined time t.

Basic Investment Strategies

What We Do

All About A Line Basic Investment Strategies

Hedging
Price Switched
Strategies
More Price
Switching

What We Actually Do

A basic investment strategy σ_t is to sell at a predetermined time t.

Problem: in hindsight we know when the oil started leaking!

Hedging

What We Do

All About A Line Basic Investment Strategies

Hedging

Price Switched Strategies More Price Switching

What We Actually Do

We distribute our initial capital \$1 over strategies $\sigma_0, \ldots, \sigma_T$. Let $\tau(t)$ denote the fraction of capital assigned to σ_t . Let $\Lambda(0) = 0$. We obtain payoff:

$$\log \sum_{t=0}^{T} e^{\Lambda(t)} \tau(t) \geq \log \left(e^{\Lambda(\hat{t})} \tau(\hat{t}) \right) = \Lambda(\hat{t}) - \left(-\log \tau(\hat{t}) \right).$$

Hedging

What We Do

All About A Line Basic Investment Strategies

Hedging

Price Switched Strategies More Price Switching

What We Actually Do

We distribute our initial capital \$1 over strategies $\sigma_0, \ldots, \sigma_T$. Let $\tau(t)$ denote the fraction of capital assigned to σ_t . Let $\Lambda(0) = 0$. We obtain payoff:

$$\log \sum_{t=0}^T e^{\Lambda(t)} \tau(t) \ \geq \ \log \left(e^{\Lambda(\hat{t})} \tau(\hat{t}) \right) \ = \ \underbrace{\Lambda(\hat{t})}_{\text{ideal}} - \underbrace{\left(-\log \tau(\hat{t}) \right)}_{\text{regret}}.$$

Regret may be relatively large or small, depending on

✓ The granularity of measurement

Hedging

What We Do

All About A Line Basic Investment Strategies

Hedging

Price Switched Strategies More Price Switching

What We Actually Do

We distribute our initial capital \$1 over strategies $\sigma_0, \ldots, \sigma_T$. Let $\tau(t)$ denote the fraction of capital assigned to σ_t . Let $\Lambda(0) = 0$. We obtain payoff:

$$\log \sum_{t=0}^T e^{\Lambda(t)} \tau(t) \ \geq \ \log \left(e^{\Lambda(\hat{t})} \tau(\hat{t}) \right) \ = \ \underbrace{\Lambda(\hat{t})}_{\text{ideal}} - \underbrace{\left(-\log \tau(\hat{t}) \right)}_{\text{regret}}.$$

Regret may be relatively large or small, depending on

✓ The granularity of measurement ← undesirable!

Price Switched Strategies

What We Do

All About A Line Basic Investment Strategies

Hedging

Price Switched Strategies

More Price Switching

What We Actually Do

We parameterised the strategy to sell by time t...

Price Switched Strategies

What We Do

All About A Line Basic Investment Strategies

Hedging

Price Switched Strategies

More Price Switching

What We Actually Do

Let us now define σ_p to sell when $\Lambda(t) \geq p$.

- \checkmark Time-switched strategy σ_t : decision to sell depends on t
- ✓ Price-switched strategy σ_p : decision to sell depends on $\Lambda(t)$

Price Switched Strategies

What We Do

All About A Line Basic Investment Strategies

Hedging

Price Switched Strategies

More Price Switching

What We Actually Do

Let us now define σ_p to sell when $\Lambda(t) \geq p$.

- \checkmark Time-switched strategy σ_t : decision to sell depends on t
- ✓ Price-switched strategy σ_p : decision to sell depends on $\Lambda(t)$

We can no longer sell at every moment. But that's OK.

More Price Switching

What We Do

All About A Line Basic Investment Strategies Hedging Price Switched

More Price Switching

Strategies

What We Actually Do

We can hedge, now with π on price levels, to obtain at least

$$\log \sum_{p=0}^{\hat{p}} e^p \pi(p) \geq \log \left(e^{\hat{p}} \pi(\hat{p}) \right) = \underbrace{\hat{p}}_{\text{ideal}} - \underbrace{\left(-\log \pi(\hat{p}) \right)}_{\text{regret}}.$$

For sufficiently large \hat{p} , the regret is relatively small!

What We Do

What We Actually Do

Continuous Price
Multiple Switches
Continuous Time
Monotonicity
Regret Bound
Example
Algorithm

What We Actually Do

Continuous Price

What We Do

What We Actually Do

Continuous Price

Multiple Switches
Continuous Time
Monotonicity
Regret Bound
Example
Algorithm

Actually, logprices are not integers and we do not pretend they are.

We can get very close to the previous bound: if π is a decreasing density on the positive reals, then

$$\log \int_0^{\hat{p}} e^p \pi(p) \, \mathrm{d}p \ \geq \ \log \left(\pi(\hat{p}) \int_0^{\hat{p}} e^p \, \mathrm{d}p \right) \ = \ \underbrace{\log(e^{\hat{p}} - 1)}_{\approx \ \mathrm{ideal} \ \hat{p}} - \underbrace{\left(-\log \pi(\hat{p}) \right)}_{\mathrm{regret}}.$$

We cannot sell at \hat{p} exactly anymore \rightarrow small additional overhead

Multiple Switches

What We Do

What We Actually Do

Continuous Price

Multiple Switches

Continuous Time Monotonicity Regret Bound Example Algorithm Actually, we are interested in exploiting multiple switches.

Let
$$\delta = (\delta_1, \delta_2, \ldots)$$
. A strategy σ_{δ} :

- ✓ initially invests all capital
- \checkmark sells all stock when the logprice goes up δ_1 or more, then
- \checkmark invests all capital again as it goes down δ_2 or more,
- etcetera.

To hedge, take the infinite product distribution of π .

Continuous Time (Theorem 1)

What We Do

What We Actually Do

Continuous Price Multiple Switches

Continuous Time

Monotonicity Regret Bound Example Algorithm Intuition: Discontinuities in Λ are helpful.

Continuous Time (Theorem 1)

What We Do

What We Actually Do

Continuous Price Multiple Switches

Continuous Time

Monotonicity Regret Bound Example Algorithm Intuition: Discontinuities in Λ are helpful.

Let the logprice function be $\Lambda:[0,T]\to\mathbb{R}$. (A discrete time scenario can be modelled by a step function.)

Continuous Time (Theorem 1)

What We Do

What We Actually Do

Continuous Price Multiple Switches

Continuous Time

Monotonicity Regret Bound Example Algorithm Intuition: Discontinuities in Λ are helpful.

Let the logprice function be $\Lambda:[0,T]\to\mathbb{R}$. (A discrete time scenario can be modelled by a step function.)

✓ We can simplify the analysis by assuming continuity.

Monotonicity (Theorem 2)

What We Do

What We Actually Do

Continuous Price Multiple Switches Continuous Time

Monotonicity

Regret Bound Example Algorithm Intuition: The more fluctuations in Λ , the better.

Monotonicity (Theorem 2)

What We Do

What We Actually Do

Continuous Price Multiple Switches Continuous Time

Monotonicity

Regret Bound Example Algorithm Intuition: The more fluctuations in Λ , the better.

Monotonicity (Theorem 2)

What We Do

What We Actually Do

Continuous Price Multiple Switches Continuous Time

Monotonicity

Regret Bound Example Algorithm Intuition: The more fluctuations in Λ , the better.

In summary, the regret compared to a specific $\sigma_{oldsymbol{\delta}}$ is maximised if

- \checkmark Λ is continuous (Thm 1)
- \checkmark Λ is monotonic in-between switches (Thm 2)

The worst case for regret coincides with the ideal case for analysis!

Regret Bound

What We Do

What We Actually Do

Continuous Price Multiple Switches Continuous Time Monotonicity

Regret Bound

Example Algorithm

Theorem 3 Fix Λ . For any basic strategy σ_{δ} that performs its m^{th} switch on Λ at time T, the payoff of our strategy is at least

$$\sum_{\substack{1 \leq \mathsf{odd} \ i \leq m \\ \mathit{ideal}}} \delta_i - \sum_{i=1}^m -\log \pi(\delta_i) - m \cdot \mathit{small}.$$

Regret Bound

What We Do

What We Actually Do

Continuous Price Multiple Switches Continuous Time Monotonicity

Regret Bound

Example Algorithm

Theorem 3 Fix Λ . For any basic strategy σ_{δ} that performs its m^{th} switch on Λ at time T, the payoff of our strategy is at least

$$\underbrace{\sum_{1 \leq \mathsf{odd}} \delta_i - \sum_{i=1}^m -\log \pi(\delta_i) - m \cdot \mathsf{small}}_{\mathsf{ideal}}.$$

Thus,

- ✓ Small fluctuations are hard to exploit
- \checkmark The bound is best applied to parsimonious strategies (with small m)

What We Do

What We Actually Do

Continuous Price Multiple Switches Continuous Time Monotonicity Regret Bound

Example

What We Do

What We Actually Do

Continuous Price Multiple Switches Continuous Time Monotonicity Regret Bound

Example

Strategy	Payoff
Invest everything	90
Ideal	1021
Model	178
Bound	105
Actual performance	175

What We Do

What We Actually Do

Continuous Price Multiple Switches Continuous Time Monotonicity Regret Bound

Example

Strategy	Payoff
Invest everything	90
Ideal	1021
Model	178
Bound	105
Actual performance	175

- ✔ Performance on real stock: probably not brilliant
- ✓ Strategy still useful as a safeguard against excessive loss

What We Do

What We Actually Do

Continuous Price Multiple Switches Continuous Time Monotonicity Regret Bound

Example

Strategy	Payoff
Invest everything	90
Ideal	1021
Model	178
Bound	105
Actual performance	175

- ✔ Performance on real stock: probably not brilliant
- ✓ Strategy still useful as a safeguard against excessive loss
- ightharpoonup In other applications Λ is usually less adversarial
- ✔ Performance is competitive with Fixed Share and typically better than Variable Share for log loss.

Algorithm

What We Do

What We Actually Do

Continuous Price Multiple Switches Continuous Time Monotonicity Regret Bound Example

Algorithm

A simple algorithm is described in the paper:

- ✓ Statisticians: "It's just Bayes"
- ✓ Learning Theorists: "It's just the Aggregating Algorithm"

Algorithm

What We Do

What We Actually Do

Continuous Price Multiple Switches Continuous Time Monotonicity Regret Bound Example

Algorithm

A simple algorithm is described in the paper:

- ✓ Statisticians: "It's just Bayes"
- ✓ Learning Theorists: "It's just the Aggregating Algorithm"
- ✓ Runs in $O(n^2)$ time and O(n) memory.
- ✓ If π is memoryless (exponential) running time can be reduced to O(n).

Algorithm

What We Do

What We Actually Do

Continuous Price Multiple Switches Continuous Time Monotonicity Regret Bound Example

Algorithm

A simple algorithm is described in the paper:

- ✓ Statisticians: "It's just Bayes"
- ✓ Learning Theorists: "It's just the Aggregating Algorithm"
- ✓ Runs in $O(n^2)$ time and O(n) memory.
- ✓ If π is memoryless (exponential) running time can be reduced to O(n).
- ✓ It buys when you're losing, and sells when you're winning?!

What We Do

What We Actually Do

Continuous Price Multiple Switches Continuous Time Monotonicity

Regret Bound

Example

Algorithm

Thanks