Switching Investments

Wouter M. Koolen and Steven de Rooij
October 6, 2010

CWI

Centrum Wiskunde \& Informatica

What We Do

All About A Line

What We Do
All About A Line Basic Investment Strategies
Hedging
Price Switched Strategies More Price Switching
What We Actually Do

All About A Line

What We Do

Vertical axis:

\checkmark Prediction with expert advice: $L_{1}\left(x_{1: t}\right)-L_{2}\left(x_{1: t}\right)$
\checkmark Hypothesis testing: $\log \left(P_{1}\left(x_{1: t}\right) / P_{0}\left(x_{1: t}\right)\right)$
\checkmark The logarithm of a stock price.

All About A Line

What We Do

Vertical axis:

\checkmark Prediction with expert advice: $L_{1}\left(x_{1: t}\right)-L_{2}\left(x_{1: t}\right)$
\checkmark Hypothesis testing: $\log \left(P_{1}\left(x_{1: t}\right) / P_{0}\left(x_{1: t}\right)\right)$
\checkmark The logarithm of a stock price.
Goal: predict whether the line will go up or down.

Basic Investment Strategies

What We Do

A basic investment strategy σ_{t} is to sell at a predetermined time t.

Basic Investment Strategies

What We Do

A basic investment strategy σ_{t} is to sell at a predetermined time t.
Problem: in hindsight we know when the oil started leaking!

Hedging

What We Do
All About A Line Basic Investment Strategies Hedging Price Switched Strategies More Price Switching
What We Actually Do

We distribute our initial capital $\$ 1$ over strategies $\sigma_{0}, \ldots, \sigma_{T}$. Let $\tau(t)$ denote the fraction of capital assigned to σ_{t}. Let $\Lambda(0)=0$. We obtain payoff:

$$
\log \sum_{t=0}^{T} e^{\Lambda(t)} \tau(t) \geq \log \left(e^{\Lambda(\hat{t})} \tau(\hat{t})\right)=\Lambda(\hat{t})-(-\log \tau(\hat{t}))
$$

Hedging

What We Do
All About A Line Basic Investment Strategies

Hedging

We distribute our initial capital $\$ 1$ over strategies $\sigma_{0}, \ldots, \sigma_{T}$. Let $\tau(t)$ denote the fraction of capital assigned to σ_{t}. Let $\Lambda(0)=0$. We obtain payoff:

$$
\log \sum_{t=0}^{T} e^{\Lambda(t)} \tau(t) \geq \log \left(e^{\Lambda(\hat{t})} \tau(\hat{t})\right)=\underbrace{\Lambda(\hat{t})}_{\text {ideal }}-\underbrace{(-\log \tau(\hat{t}))}_{\text {regret }}
$$

Regret may be relatively large or small, depending on
\checkmark The granularity of measurement

Hedging

What We Do
All About A Line Basic Investment Strategies

Hedging

We distribute our initial capital $\$ 1$ over strategies $\sigma_{0}, \ldots, \sigma_{T}$. Let $\tau(t)$ denote the fraction of capital assigned to σ_{t}. Let $\Lambda(0)=0$. We obtain payoff:

$$
\log \sum_{t=0}^{T} e^{\Lambda(t)} \tau(t) \geq \log \left(e^{\Lambda(\hat{t})} \tau(\hat{t})\right)=\underbrace{\Lambda(\hat{t})}_{\text {ideal }}-\underbrace{(-\log \tau(\hat{t}))}_{\text {regret }}
$$

Regret may be relatively large or small, depending on
\checkmark The granularity of measurement \leftarrow undesirable!

Price Switched Strategies

What We Do
All About A Line Basic Investment Strategies
Hedging Price Switched Strategies More Price Switching
What We Actually Do
-

We parameterised the strategy to sell by time $t \ldots$

Price Switched Strategies

What We Do
All About A Line Basic Investment Strategies Hedging Price Switched Strategies More Price Switching
What We Actually Do

Let us now define σ_{p} to sell when $\Lambda(t) \geq p$.
\checkmark Time-switched strategy σ_{t} : decision to sell depends on t
\checkmark Price-switched strategy σ_{p} : decision to sell depends on $\Lambda(t)$

Price Switched Strategies

What We Do
All About A Line Basic Investment Strategies Hedging Price Switched Strategies More Price Switching
What We Actually Do

Let us now define σ_{p} to sell when $\Lambda(t) \geq p$.
\checkmark Time-switched strategy σ_{t} : decision to sell depends on t
\checkmark Price-switched strategy σ_{p} : decision to sell depends on $\Lambda(t)$
We can no longer sell at every moment. But that's OK.

More Price Switching

What We Do
All About A Line Basic Investment Strategies Hedging Price Switched Strategies More Price Switching
What We Actually Do

We can hedge, now with π on price levels, to obtain at least

$$
\log \sum_{p=0}^{\hat{p}} e^{p} \pi(p) \geq \log \left(e^{\hat{p}} \pi(\hat{p})\right)=\underbrace{\hat{p}}_{\text {ideal }}-\underbrace{(-\log \pi(\hat{p}))}_{\text {regret }}
$$

For sufficiently large \hat{p}, the regret is relatively small!

What We Actually Do

Continuous Price

What We Do
What We Actually

Do

Continuous Price
Multiple Switches
Continuous Time
Monotonicity
Regret Bound
Example
Algorithm

Actually, logprices are not integers and we do not pretend they are.
We can get very close to the previous bound:
if π is a decreasing density on the positive reals, then

$$
\log \int_{0}^{\hat{p}} e^{p} \pi(p) \mathrm{d} p \geq \log \left(\pi(\hat{p}) \int_{0}^{\hat{p}} e^{p} \mathrm{~d} p\right)=\underbrace{\log \left(e^{\hat{p}}-1\right)}_{\approx \text { ideal } \hat{p}}-\underbrace{(-\log \pi(\hat{p}))}_{\text {regret }} .
$$

We cannot sell at \hat{p} exactly anymore \rightarrow small additional overhead

Multiple Switches

What We Do

Actually, we are interested in exploiting multiple switches.
Let $\boldsymbol{\delta}=\left(\delta_{1}, \delta_{2}, \ldots\right)$. A strategy $\sigma_{\boldsymbol{\delta}}$:
\checkmark initially invests all capital
\checkmark sells all stock when the logprice goes up δ_{1} or more, then
\checkmark invests all capital again as it goes down δ_{2} or more,
\checkmark etcetera.

To hedge, take the infinite product distribution of π.

Continuous Time (Theorem 1)

What We Do

Intuition: Discontinuities in Λ are helpful.

Continuous Time (Theorem 1)

What We Do

Continuous Price Multiple Switches Continuous Time
Monotonicity Regret Bound Example
Algorithm

Intuition: Discontinuities in Λ are helpful.
Let the logprice function be $\Lambda:[0, T] \rightarrow \mathbb{R}$.
(A discrete time scenario can be modelled by a step function.)

Continuous Time (Theorem 1)

What We Do

Continuous Price Multiple Switches Continuous Time
Monotonicity Regret Bound Example
Algorithm

Intuition: Discontinuities in Λ are helpful.
Let the logprice function be $\Lambda:[0, T] \rightarrow \mathbb{R}$.
(A discrete time scenario can be modelled by a step function.)

\checkmark We can simplify the analysis by assuming continuity.

Monotonicity (Theorem 2)

What We Do

Intuition: The more fluctuations in Λ, the better.

Monotonicity (Theorem 2)

What We Do What We Actually Do
Continuous Price Multiple Switches Continuous Time Monotonicity Regret Bound Example Algorithm

Intuition: The more fluctuations in Λ, the better.

Monotonicity (Theorem 2)

What We Do What We Actually Do
Continuous Price Multiple Switches Continuous Time Monotonicity Regret Bound Example Algorithm

Intuition: The more fluctuations in Λ, the better.

Market days

In summary, the regret compared to a specific $\sigma_{\boldsymbol{\delta}}$ is maximised if
$\checkmark \Lambda$ is continuous (Thm 1)
$\checkmark \Lambda$ is monotonic in-between switches (Thm 2)
The worst case for regret coincides with the ideal case for analysis!

Regret Bound

What We Do

Theorem 3 Fix Λ. For any basic strategy σ_{δ} that performs its $m^{\text {th }}$ switch on Λ at time T, the payoff of our strategy is at least

Regret Bound

What We Do
What We Actually

Do

Continuous Price Multiple Switches Continuous Time Monotonicity Regret Bound Example Algorithm

Theorem 3 Fix Λ. For any basic strategy σ_{δ} that performs its $m^{\text {th }}$ switch on Λ at time T, the payoff of our strategy is at least

$$
\underbrace{\sum_{1 \leq \text { odd } i \leq m} \delta_{i}}_{\text {ideal }}-\underbrace{\sum_{i=1}^{m}-\log \pi\left(\delta_{i}\right)-m \cdot \text { small. }}_{\text {regret }} .
$$

Thus,
\checkmark Small fluctuations are hard to exploit
\checkmark The bound is best applied to parsimonious strategies (with small m)

Example

What We Do What We Actually Do
Continuous Price Multiple Switches Continuous Time Monotonicity Regret Bound

Example

Algorithm

Example

What We Do

Strategy	Payoff
Invest everything	90
Ideal	1021
Model	178
Bound	105
Actual performance	175

Example

What We Do

Continuous Price

 Multiple Switches Continuous TimeMonotonicity Regret Bound Example Algorithm

Strategy	Payoff
Invest everything	90
Ideal	1021
Model	178
Bound	105
Actual performance	175

\checkmark Performance on real stock: probably not brilliant
\checkmark Strategy still useful as a safeguard against excessive loss

Example

What We Do

Continuous Price Multiple Switches Continuous Time
Monotonicity Regret Bound

Example

Algorithm

Strategy	Payoff
Invest everything	90
Ideal	1021
Model	178
Bound	105
Actual performance	175

\checkmark Performance on real stock: probably not brilliant
\checkmark Strategy still useful as a safeguard against excessive loss
\checkmark In other applications Λ is usually less adversarial
\checkmark Performance is competitive with Fixed Share and typically better than Variable Share for log loss.

Algorithm

What We Do

A simple algorithm is described in the paper:
\checkmark Statisticians: "It's just Bayes"
\checkmark Learning Theorists: "It's just the Aggregating Algorithm"

Algorithm

What We Do
What We Actually
Do

Continuous Price Multiple Switches Continuous Time
Monotonicity Regret Bound Example Algorithm

A simple algorithm is described in the paper:
\checkmark Statisticians: "It's just Bayes"
\checkmark Learning Theorists: "It's just the Aggregating Algorithm"
\checkmark Runs in $O\left(n^{2}\right)$ time and $O(n)$ memory.
\checkmark If π is memoryless (exponential) running time can be reduced to $O(n)$.

Algorithm

What We Do
What We Actually
Do

Continuous Price Multiple Switches Continuous Time
Monotonicity Regret Bound Example Algorithm

A simple algorithm is described in the paper:
\checkmark Statisticians: "It's just Bayes"
\checkmark Learning Theorists: "It's just the Aggregating Algorithm"
\checkmark Runs in $O\left(n^{2}\right)$ time and $O(n)$ memory.
\checkmark If π is memoryless (exponential) running time can be reduced to $O(n)$.
\checkmark It buys when you're losing, and sells when you're winning?!

What We Do What We Actually Do Continuous Price Multiple Switches Continuous Time Monotonicity Regret Bound Example Algorithm

Thanks

