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Our contribution

■ Unification using ES-priors & HMMs

■ Intuitive graphical language
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xn = x1, x2, . . . , xn

P (xn) = P (x1)P (x2|x1)P (x3|x
2) · · ·P (xn|x

n−1),

or, equivalently, suffers low cumulative log loss

− logP (xn) =
n∑

i=1

− logP (xi|x
i−1)

︸ ︷︷ ︸

Log loss on xi

.
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■ . . . funky combination
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≤ − logw(ξ) +
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loss of ξ on xi

Time Complexity Predicts x1, . . . , xn in time O
(
n|Ξ|

)
.
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Time Complexity Exponentially many terms.
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Posterior Forward Algorithm computes the posterior on
the next state, and hence on the next expert.

Time Complexity Predicting outcomes x1, . . . , xn:
proportional to number of edges in the HMM before time n.
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■ Interpolates Bayes and element-wise mixtures

■ Switching rate α

■ Fix data xn. Let ξn(m) be the best ES with m switches,
α∗ = m

n−1
. Then

− log
Pfs(α)(x

n)

Pξn
(m)

(xn)
≤ (n−1)

(
H(α∗) +D(α∗‖α)

)
+m log|Ξ| .
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Prediction with experts

■ Model temporal evolution of best expert combination

■ Intuitive graphical language

■ Unifies existing algorithms

■ HMM size ⇔ computational complexity

■ Loss bounds

■ New models
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