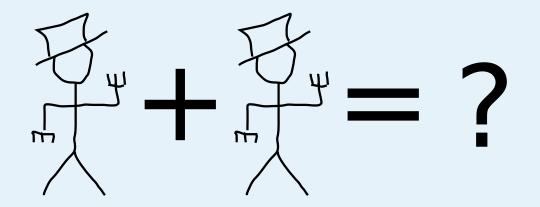
Combining Expert Advice Efficiently

Wouter Koolen-Wijkstra

Joint work with Steven de Rooij

Friday 11 July, 2008



à la Carte

Introduction

Strategies

HMMs

Conclusion

Introduction Strategies

HMMs

Conclusion

The State of the Art

Introduction The State of the Art Sequential Prediction Evaluating Performance Sequential Prediction with Experts Evaluating Performance with Experts Strategies

HMMs

Conclusion

Prior Art

- Weighted Majority
- Aggregating Algorithm
- Switching Method
- Fixed Share
- Universal Share
- Switch Distribution

Littlestone and Warmuth,1989

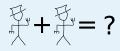
Vovk, 1990

Volf and Willems, 1998

Herbster and Warmuth, 1998

Monteleoni and Jaakkola, 2003

De Rooij, Van Erven, Grünwald, 2007



The State of the Art

Introduction The State of the Art Sequential Prediction Evaluating Performance Sequential Prediction with Experts Evaluating Performance with Experts Strategies

HMMs

Conclusion

Prior Art

- Weighted Majority
- Aggregating Algorithm
- Switching Method
- Fixed Share
- Universal Share
- Switch Distribution

Littlestone and Warmuth,1989

Vovk, 1990

Volf and Willems, 1998

Herbster and Warmuth, 1998

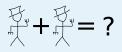
Monteleoni and Jaakkola, 2003

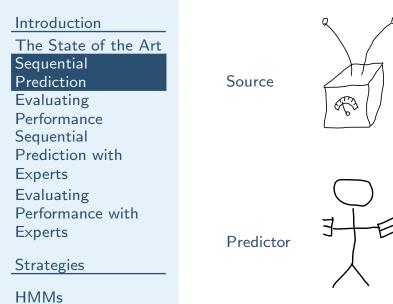
De Rooij, Van Erven, Grünwald, 2007

Our contribution

Unification using ES-priors & HMMs

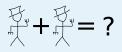
Intuitive graphical language

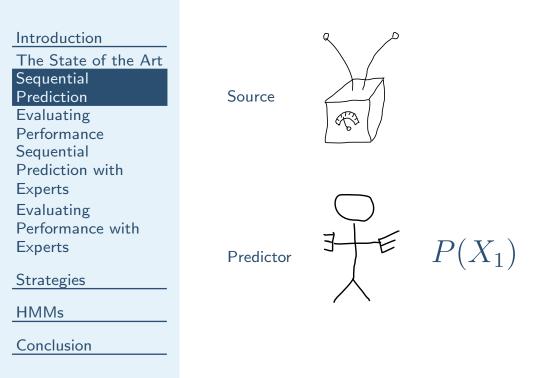


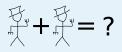


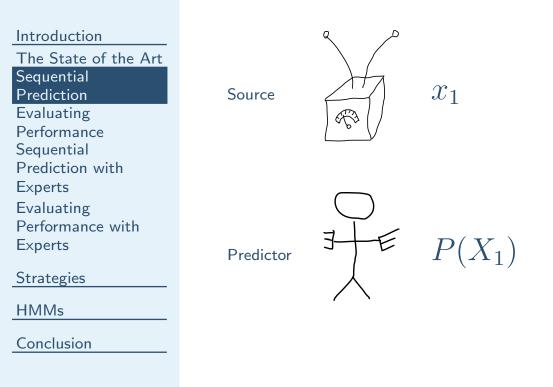
.....

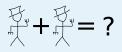
Conclusion

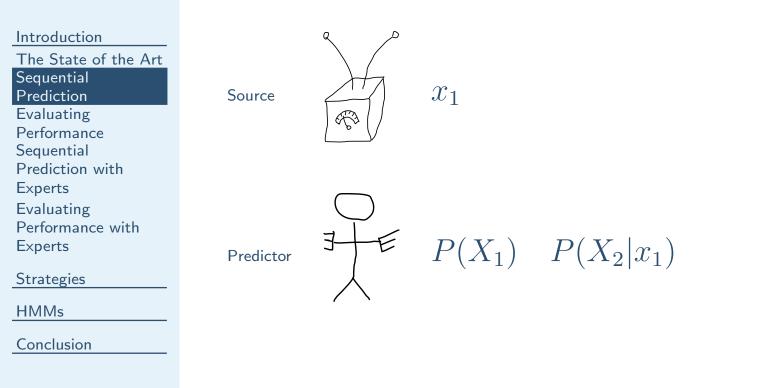


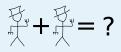


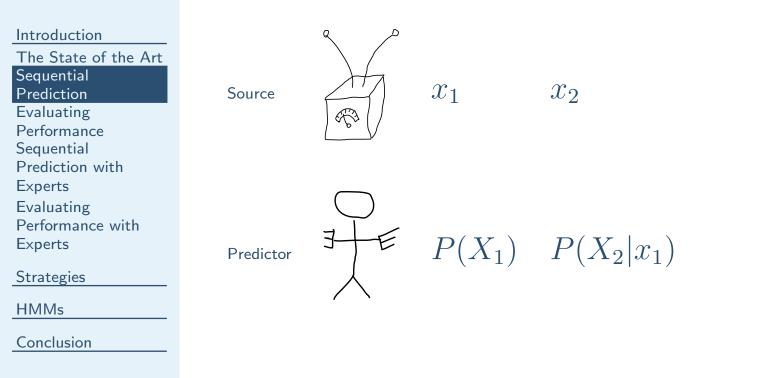


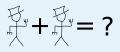


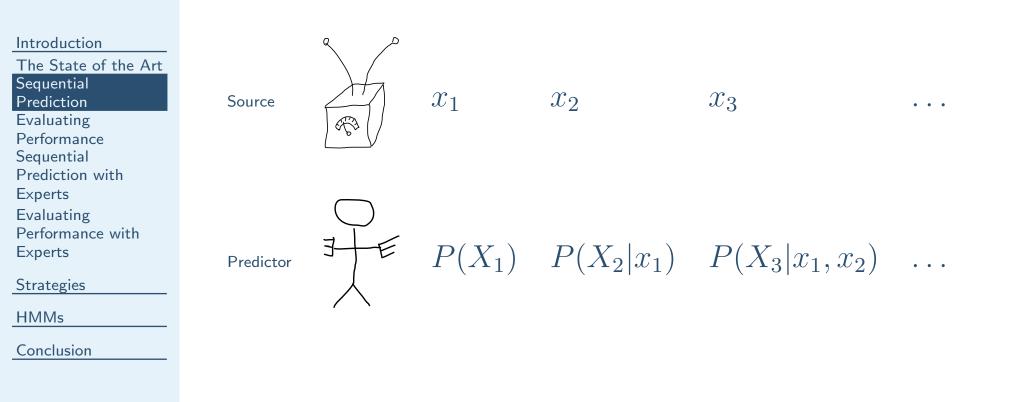


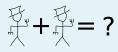












Evaluating Performance

Introduction

The State of the Art

Sequential

Prediction

Evaluating

Performance Sequential

Prediction with

Experts

Evaluating

Performance with

Experts

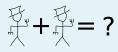
Strategies

HMMs

Conclusion

A good predictor assigns high probability to the data $x^n = x_1, x_2, \dots, x_n$

$$P(x^{n}) = P(x_{1})P(x_{2}|x_{1})P(x_{3}|x^{2})\cdots P(x_{n}|x^{n-1}),$$



Evaluating Performance

Introduction

The State of the Art

Sequential

Prediction

Evaluating

Performance Sequential

Prediction with

Experts

Evaluating

Performance with Experts

Strategies

HMMs

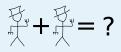
Conclusion

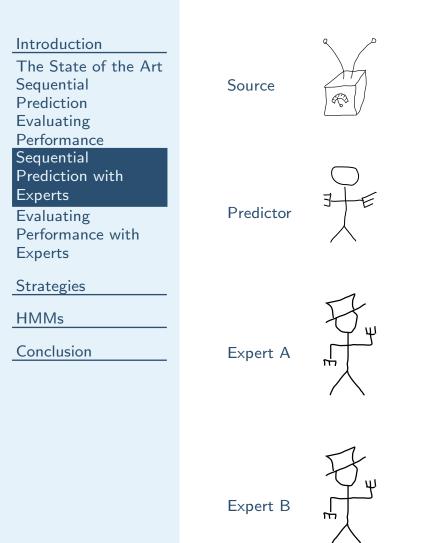
A good predictor assigns high probability to the data $x^n = x_1, x_2, \dots, x_n$

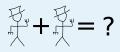
$$P(x^{n}) = P(x_{1})P(x_{2}|x_{1})P(x_{3}|x^{2})\cdots P(x_{n}|x^{n-1}),$$

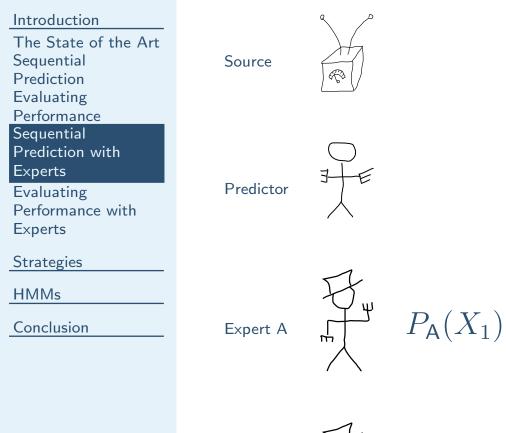
or, equivalently, suffers low cumulative log loss

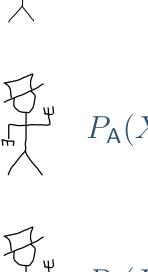
$$-\log P(x^n) = \sum_{i=1}^n \underbrace{-\log P(x_i | x^{i-1})}_{\text{Log loss on } x_i}.$$



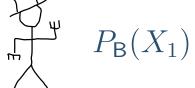


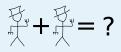


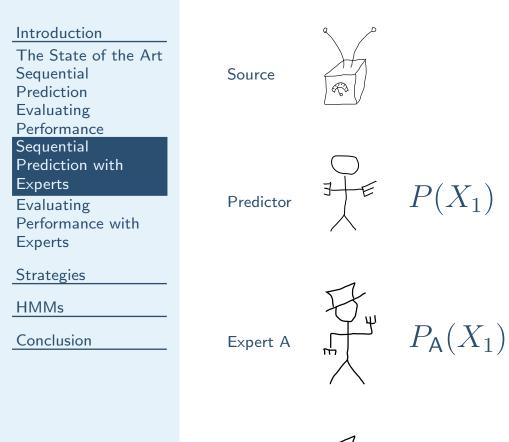




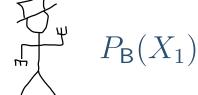
 $\mathsf{Expert}\ \mathsf{B}$

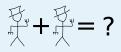


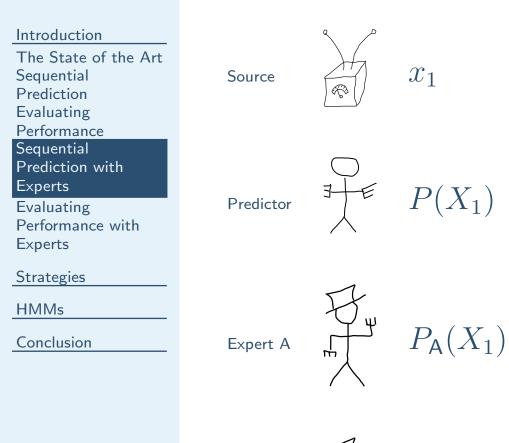


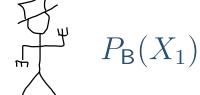


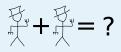
Expert B

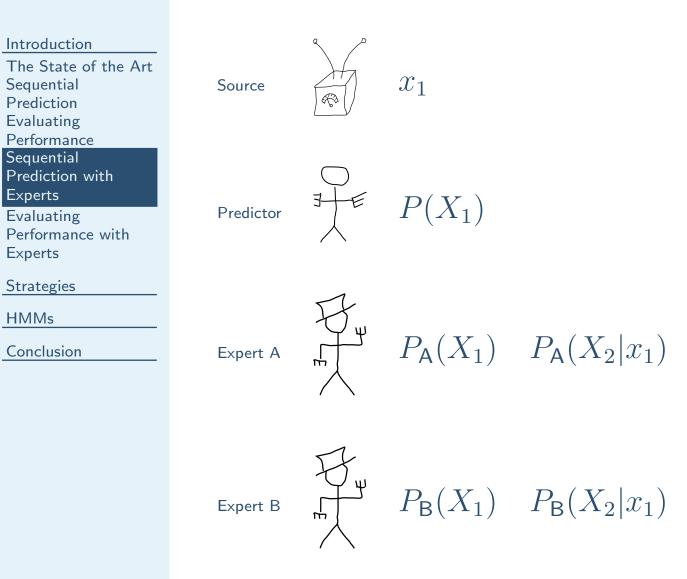


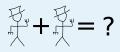


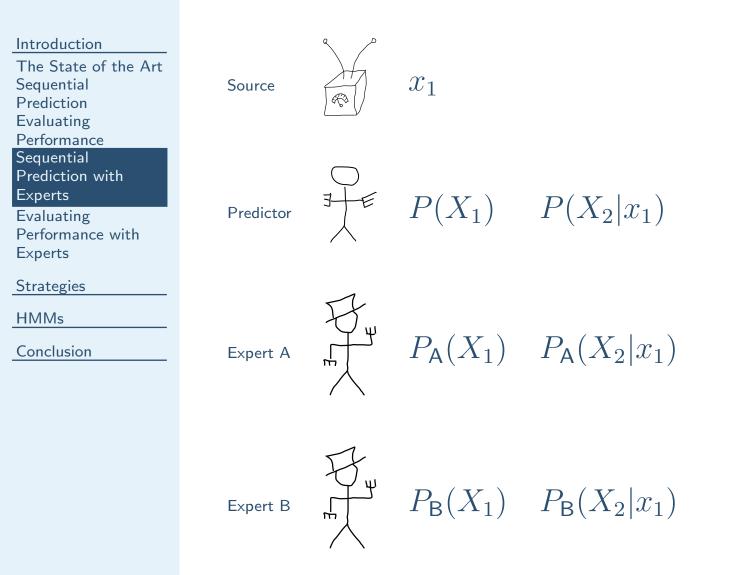


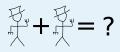


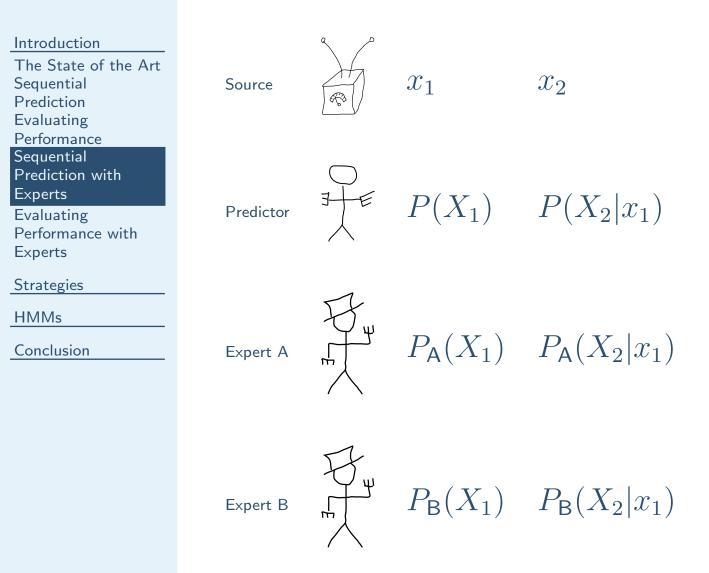


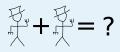


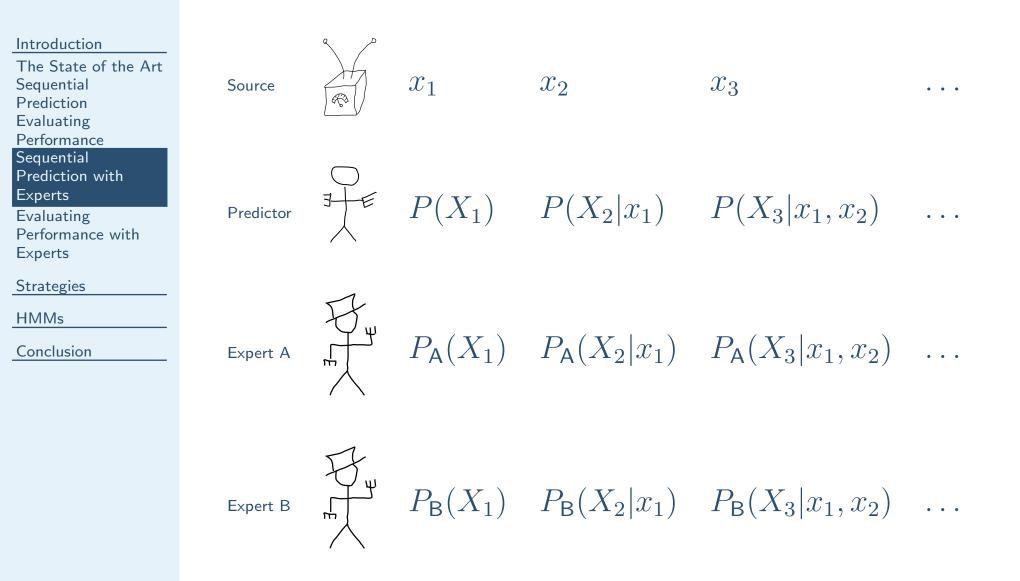


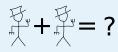












Introduction

The State of the Art Sequential Prediction Evaluating

Performance

Sequential

Prediction with

Experts

Evaluating Performance with Experts

Strategies

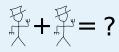
HMMs

Conclusion

A good predictor assigns high probability to the data x^n compared to e.g.

 $\prod_{\xi \in \{\mathsf{A},\mathsf{B}\}} P_{\xi}(x^n)$

the best expert



Introduction

The State of the Art Sequential Prediction

Evaluating Performance

Sequential

Prediction with

Experts

Evaluating Performance with Experts

Strategies

HMMs

Conclusion

A good predictor assigns high probability to the data x^n compared to e.g.

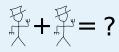
 $\prod_{\xi \in \{\mathsf{A},\mathsf{B}\}} P_{\xi}(x^n)$

 $\prod_{\alpha \in [0,1]} P_{\alpha}(x^n)$

the best mixture of experts

the best expert

 $P_{\alpha}(x_i|x^{i-1}) = \alpha P_{\mathsf{A}}(x_i|x^{i-1}) + (1-\alpha)P_{\mathsf{B}}(x_i|x^{i-1})$



Introduction

The State of the Art Sequential Prediction Evaluating

Performance

Sequential

Prediction with

Experts

Evaluating Performance with Experts

Strategies

HMMs

Conclusion

A good predictor assigns high probability to the data x^n compared to e.g.

 $\blacksquare \max_{\xi \in \{\mathsf{A},\mathsf{B}\}} P_{\xi}(x^n)$

 $\prod_{\alpha \in [0,1]} P_{\alpha}(x^n)$

the best mixture of experts

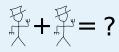
the best expert

$$P_{\alpha}(x_i|x^{i-1}) = \alpha P_{\mathsf{A}}(x_i|x^{i-1}) + (1-\alpha)P_{\mathsf{B}}(x_i|x^{i-1})$$

 $\max_{\xi^n \in \{\mathsf{A},\mathsf{B}\}^n} P_{\xi^n}(x^n)$

the best sequence of experts

$$P_{\xi^n}(x_i|x^{i-1}) = P_{\xi_i}(x_i|x^{i-1}) \qquad (\xi^n = \xi_1, \xi_2, \dots, \xi_n)$$



Introduction

The State of the Art Sequential Prediction Evaluating

Performance

Sequential

Prediction with

Experts

Evaluating Performance with Experts

Strategies

HMMs

Conclusion

A good predictor assigns high probability to the data x^n compared to e.g.

 $\blacksquare \max_{\xi \in \{\mathsf{A},\mathsf{B}\}} P_{\xi}(x^n)$

 $\prod_{\alpha \in [0,1]} P_{\alpha}(x^n)$

the best mixture of experts

the best expert

$$P_{\alpha}(x_i|x^{i-1}) = \alpha P_{\mathsf{A}}(x_i|x^{i-1}) + (1-\alpha)P_{\mathsf{B}}(x_i|x^{i-1})$$

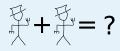
 $\max_{\xi^n \in \{\mathsf{A},\mathsf{B}\}^n} P_{\xi^n}(x^n)$

. . .

the best sequence of experts

$$P_{\xi^n}(x_i|x^{i-1}) = P_{\xi_i}(x_i|x^{i-1}) \qquad (\xi^n = \xi_1, \xi_2, \dots, \xi_n)$$

funky combination



Introduction

Strategies

The Bayesian Prediction Strategy

Analysis of Bayes ES-Priors Analysis of ES

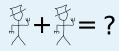
Prediction

HMMs

Conclusion

Place a prior w on the set of experts Ξ .

$$P_w(x^n,\xi) := w(\xi)P_{\xi}(x^n)$$
 (Joint)



Introduction

Strategies

The Bayesian Prediction Strategy

Analysis of Bayes ES-Priors Analysis of ES Prediction

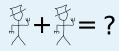
HMMs

Conclusion

Place a prior w on the set of experts Ξ .

$$P_w(x^n,\xi) := w(\xi)P_{\xi}(x^n)$$
 (Joint)

$$P_w(x^n) = \sum_{\xi \in \Xi} P_w(x^n, \xi)$$
 (Marginal)



Introduction

Strategies

The Bayesian Prediction Strategy

Analysis of Bayes ES-Priors Analysis of ES Prediction

HMMs

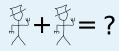
Conclusion

Place a prior w on the set of experts Ξ .

 $P_w(x^n,\xi) := w(\xi)P_{\xi}(x^n)$ (Joint)

$$P_w(x^n) = \sum_{\xi \in \Xi} P_w(x^n, \xi)$$
 (Marginal)

$$P_w(\xi|x^n) = P_w(x^n,\xi) / P_w(x^n)$$
 (Posterior)



Introduction

Strategies

The Bayesian Prediction Strategy

Analysis of Bayes ES-Priors Analysis of ES Prediction

HMMs

Conclusion

Place a prior w on the set of experts Ξ .

 $P_w(x^n,\xi) := w(\xi)P_{\xi}(x^n)$ (Joint)

$$P_w(x^n) = \sum_{\xi \in \Xi} P_w(x^n, \xi)$$
 (Marginal)

$$P_w(\xi|x^n) = P_w(x^n,\xi) / P_w(x^n)$$
 (Posterior)

$$P_w(x_{n+1}|x^n) = \sum_{\xi \in \Xi} P_w(\xi|x^n) P_{\xi}(x_{n+1}|x^n) \quad \text{(Predictive)}$$

;+**;**+**;**=?

Analysis of Bayes

Introduction

Strategies

The Bayesian Prediction Strategy

Analysis of Bayes

ES-Priors Analysis of ES Prediction

HMMs

Conclusion

 $P_w(x^n) = \sum_{\xi \in \Xi} w(\xi) P_{\xi}(x^n)$ (Marginal)

Loss bound Let ξ be any expert, and let ξ be the best expert:

$$\boldsymbol{\xi} = \operatorname{argmax}_{\xi \in \Xi} P_{\xi}(x^n).$$

The Bayesian prediction strategy satisfies

 $P_{\boldsymbol{\xi}}(x^n) \geq P_w(x^n) \geq w(\boldsymbol{\xi})P_{\boldsymbol{\xi}}(x^n).$

;+**;**+**;**=?

Analysis of Bayes

Introduction

Strategies

The Bayesian Prediction Strategy

Analysis of Bayes

ES-Priors Analysis of ES Prediction

HMMs

Conclusion

 $P_w(x^n) = \sum_{\xi \in \Xi} w(\xi) P_{\xi}(x^n)$ (Marginal)

Loss bound Let ξ be any expert, and let ξ be the best expert:

$$\boldsymbol{\xi} = \operatorname{argmax}_{\xi \in \Xi} P_{\xi}(x^n).$$

The Bayesian prediction strategy satisfies

 $P_{\boldsymbol{\xi}}(x^n) \geq P_w(x^n) \geq w(\boldsymbol{\xi})P_{\boldsymbol{\xi}}(x^n).$

$$\sum_{i=1}^{n} \underbrace{-\log P_w(x_i|x^{i-1})}_{\text{loss of Bayes on } x_i} \leq -\log w(\xi) + \sum_{i=1}^{n} \underbrace{-\log P_{\xi}(x_i|x^{i-1})}_{\text{loss of } \xi \text{ on } x_i}$$

;+**;**+**;**=?

Analysis of Bayes

Introduction

Strategies

The Bayesian Prediction Strategy

Analysis of Bayes

ES-Priors Analysis of ES Prediction

HMMs

Conclusion

 $P_w(x^n) = \sum_{\xi \in \Xi} w(\xi) P_{\xi}(x^n)$ (Marginal)

Loss bound Let ξ be any expert, and let ξ be the best expert:

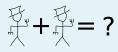
$$\boldsymbol{\xi} = \operatorname{argmax}_{\xi \in \Xi} P_{\boldsymbol{\xi}}(x^n).$$

The Bayesian prediction strategy satisfies

$$P_{\boldsymbol{\xi}}(x^n) \geq P_w(x^n) \geq w(\boldsymbol{\xi})P_{\boldsymbol{\xi}}(x^n).$$

$$\sum_{i=1}^{n} \underbrace{-\log P_w(x_i|x^{i-1})}_{\text{loss of Bayes on } x_i} \leq -\log w(\xi) + \sum_{i=1}^{n} \underbrace{-\log P_{\xi}(x_i|x^{i-1})}_{\text{loss of } \xi \text{ on } x_i}$$

Time Complexity Predicts x_1, \ldots, x_n in time $O(n|\Xi|)$.



Introduction

Strategies

The Bayesian Prediction Strategy

Analysis of Bayes

ES-Priors

Analysis of ES Prediction

HMMs

Conclusion

Place a prior π on the set of *sequences* of experts Ξ^{∞} .

 $P_{\pi}(x^n,\xi^n) := \pi(\xi^n) P_{\xi^n}(x^n)$ (Joint)

Introduction

Strategies

The Bayesian Prediction Strategy

Analysis of Bayes

ES-Priors

Analysis of ES Prediction

HMMs

Conclusion

Place a prior π on the set of *sequences* of experts Ξ^{∞} .

$$P_{\pi}(x^n,\xi^n) := \pi(\xi^n) P_{\xi^n}(x^n)$$
 (Joint)

$$P_{\pi}(x^n) = \sum_{\xi^n \in \Xi^n} P_{\pi}(x^n, \xi^n)$$
 (Marginal)

Introduction

Strategies

The Bayesian Prediction Strategy

Analysis of Bayes

ES-Priors

Analysis of ES Prediction

HMMs

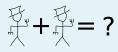
Conclusion

Place a prior π on the set of *sequences* of experts Ξ^{∞} .

$$P_{\pi}(x^n,\xi^n) := \pi(\xi^n) P_{\xi^n}(x^n)$$
 (Joint)

$$P_{\pi}(x^n) = \sum_{\xi^n \in \Xi^n} P_{\pi}(x^n, \xi^n)$$
 (Marginal)

$$P_{\pi}(\xi_{n+1}|x^n) = P_{\pi}(x^n, \xi_{n+1}) / P_{\pi}(x^n)$$
 (Posterior)



Introduction

Strategies

The Bayesian Prediction Strategy

Analysis of Bayes

ES-Priors

Analysis of ES Prediction

HMMs

Conclusion

Place a prior π on the set of *sequences* of experts Ξ^{∞} .

$$P_{\pi}(x^n,\xi^n) := \pi(\xi^n) P_{\xi^n}(x^n)$$
 (Joint)

$$P_{\pi}(x^{n}) = \sum_{\xi^{n} \in \Xi^{n}} P_{\pi}(x^{n}, \xi^{n})$$
 (Marginal)

$$P_{\pi}(\xi_{n+1}|x^n) = P_{\pi}(x^n, \xi_{n+1}) / P_{\pi}(x^n) \qquad (\text{Posterior})$$

$$P_{\pi}(x_{n+1}|x^n) = \sum_{\xi_{n+1}} P_{\pi}(\xi_{n+1}|x^n) P_{\xi_{n+1}}(x_{n+1}|x^n)$$
(Predictive)

;+**;**+**;**=?

Analysis of ES Prediction

Introduction

Strategies The Bayesian Prediction Strategy Analysis of Bayes ES-Priors Analysis of ES Prediction

HMMs

Conclusion

$$P_{\pi}(x^n) = \sum_{\xi^n \in \Xi^n} \pi(\xi^n) P_{\xi^n}(x^n) \qquad \text{(Marginal)}$$

Loss bound Let ξ^n be any expert sequence, and let ξ^n be the best expert sequence:

$$\mathbf{f}^{n} = \operatorname{argmax}_{\xi^{n} \in \Xi^{n}} P_{\xi^{n}}(x^{n}).$$

The ES prediction strategy satisfies

 $P_{\boldsymbol{\xi}^n}(x^n) \geq P_{\pi}(x^n) \geq \pi(\boldsymbol{\xi}^n) P_{\boldsymbol{\xi}^n}(x^n).$

Ţ+Ţ=?

Analysis of ES Prediction

Introduction

Strategies The Bayesian Prediction Strategy Analysis of Bayes ES-Priors Analysis of ES Prediction

HMMs

Conclusion

$$P_{\pi}(x^n) = \sum_{\xi^n \in \Xi^n} \pi(\xi^n) P_{\xi^n}(x^n) \qquad \text{(Marginal)}$$

Loss bound Let ξ^n be any expert sequence, and let ξ^n be the best expert sequence:

$$\mathbf{f}^{n} = \operatorname{argmax}_{\xi^{n} \in \Xi^{n}} P_{\xi^{n}}(x^{n}).$$

The ES prediction strategy satisfies

$$P_{\boldsymbol{\xi}^n}(x^n) \geq P_{\pi}(x^n) \geq \pi(\boldsymbol{\xi}^n) P_{\boldsymbol{\xi}^n}(x^n).$$

$$\sum_{i=1}^{n} \underbrace{-\log P_{\pi}(x_i|x^{i-1})}_{\text{loss of ES on } x_i} \leq \sum_{i=1}^{n} \left(\underbrace{-\log \pi(\xi_i|\xi^{i-1})}_{\text{cost of following } \xi_i} \underbrace{-\log P_{\xi_i}(x_i|x^{i-1})}_{\text{loss of } \xi_i \text{ on } x_i} \right)$$

Ţ+Ţ=?

Analysis of ES Prediction

Introduction

Strategies The Bayesian Prediction Strategy Analysis of Bayes ES-Priors Analysis of ES Prediction

HMMs

Conclusion

$$P_{\pi}(x^n) = \sum_{\xi^n \in \Xi^n} \pi(\xi^n) P_{\xi^n}(x^n) \qquad \text{(Marginal)}$$

Loss bound Let ξ^n be any expert sequence, and let ξ^n be the best expert sequence:

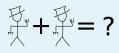
$$\mathbf{f}^{n} = \operatorname{argmax}_{\xi^{n} \in \Xi^{n}} P_{\xi^{n}}(x^{n}).$$

The ES prediction strategy satisfies

$$P_{\boldsymbol{\xi}^n}(x^n) \geq P_{\pi}(x^n) \geq \pi(\boldsymbol{\xi}^n) P_{\boldsymbol{\xi}^n}(x^n).$$

$$\sum_{i=1}^{n} \underbrace{-\log P_{\pi}(x_i|x^{i-1})}_{\text{loss of ES on } x_i} \leq \sum_{i=1}^{n} \left(\underbrace{-\log \pi(\xi_i|\xi^{i-1})}_{\text{cost of following } \xi_i} \underbrace{-\log P_{\xi_i}(x_i|x^{i-1})}_{\text{loss of } \xi_i \text{ on } x_i} \right)$$

Time Complexity Exponentially many terms.



Hidden Markov Models

Introduction

Strategies

HMMs Hidden Markov Models

Bayes & Mixtures

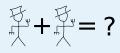
 $\mathsf{Fixed} \ \mathsf{Share}$

Universal Share

Switch Distribution

Conclusion

Our solution: let π be the marginal of a Hidden Markov model.



Hidden Markov Models

Introduction

Strategies

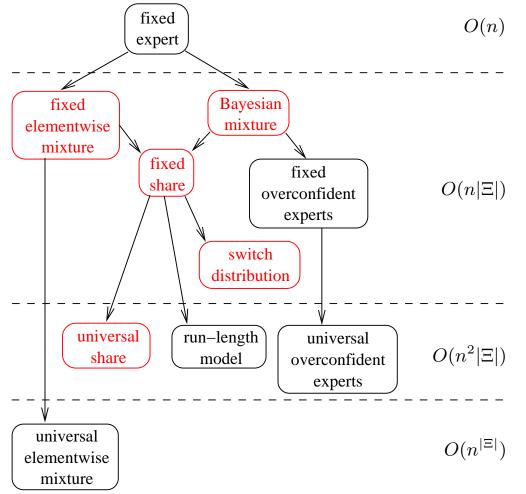
HMMs Hidden Markov Models

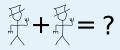
Bayes & Mixtures Fixed Share Universal Share

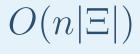
Switch Distribution

Conclusion

Our solution: let π be the marginal of a Hidden Markov model.







Introduction

Strategies

HMMs

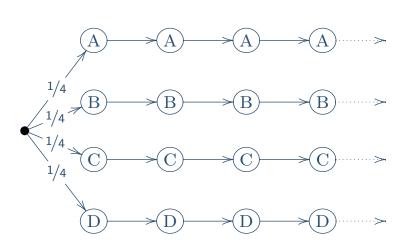
Hidden Markov Models

Bayes & Mixtures

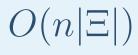
Fixed Share

Universal Share

Switch Distribution







Introduction

Strategies

HMMs

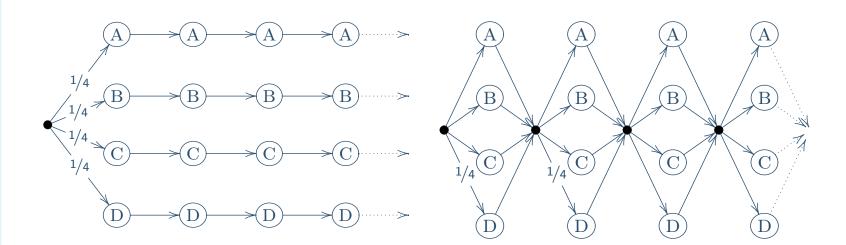
Hidden Markov Models

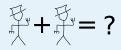
Bayes & Mixtures

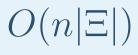
Fixed Share

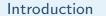
Universal Share

Switch Distribution









Strategies

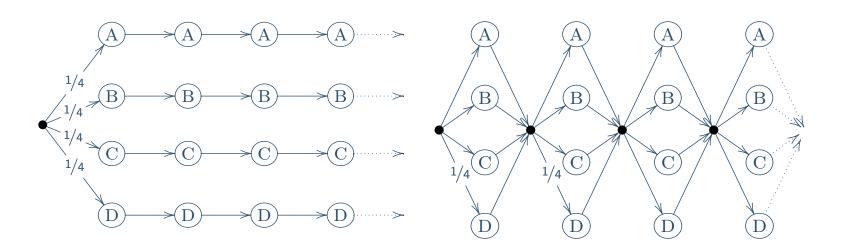
HMMs Hidden Markov Models

Bayes & Mixtures

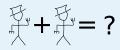
Fixed Share Universal Share

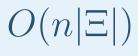
Switch Distribution

Conclusion



Posterior Forward Algorithm computes the posterior on the next state, and hence on the next expert.





Strategies

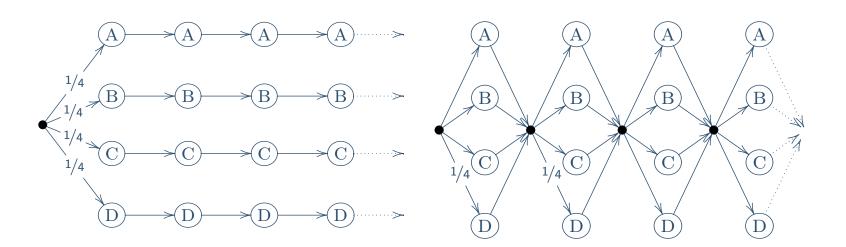
HMMs Hidden Markov Models

Bayes & Mixtures

Fixed Share Universal Share

Switch Distribution

Conclusion

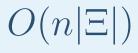


Posterior Forward Algorithm computes the posterior on the next state, and hence on the next expert.

Time Complexity Predicting outcomes x_1, \ldots, x_n : proportional to *number of edges* in the HMM before time n.



Fixed Share



Introduction

Strategies

 HMMs

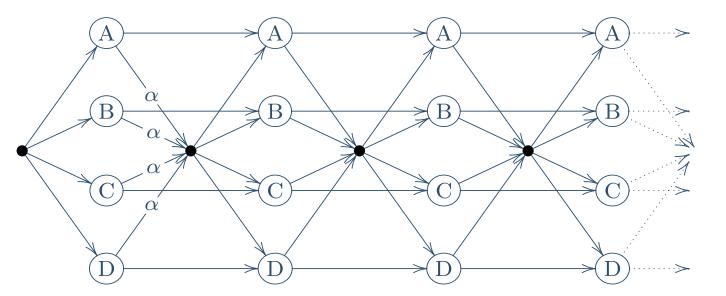
Hidden Markov Models

Bayes & Mixtures

Fixed Share

Universal Share Switch Distribution

Conclusion



Interpolates Bayes and element-wise mixtures

 $\blacksquare \text{ Switching rate } \alpha$

Fixed Share

 $O(n|\Xi|)$

Introduction

Strategies

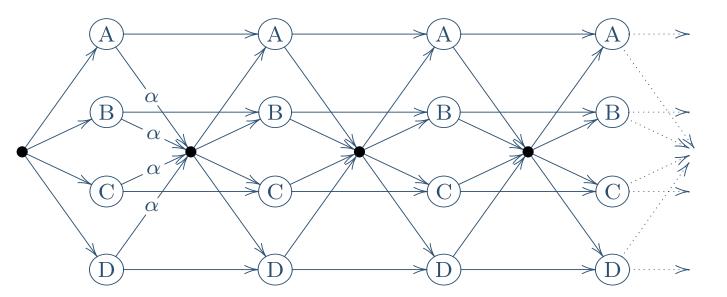
HMMs

Hidden Markov Models

Bayes & Mixtures

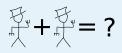
Fixed Share

Universal Share Switch Distribution



- Interpolates Bayes and element-wise mixtures
- **Switching rate** α
- Fix data x^n . Let $\xi^n_{(m)}$ be the best ES with m switches, $\alpha^* = \frac{m}{n-1}$. Then

$$-\log \frac{P_{\mathsf{fs}(\alpha)}(x^n)}{P_{\boldsymbol{\xi}_{(m)}^n}(x^n)} \leq (n-1) \left(H(\alpha^*) + D(\alpha^* ||\alpha) \right) + m \log|\Xi|.$$



Universal Share

Strategies

HMMs

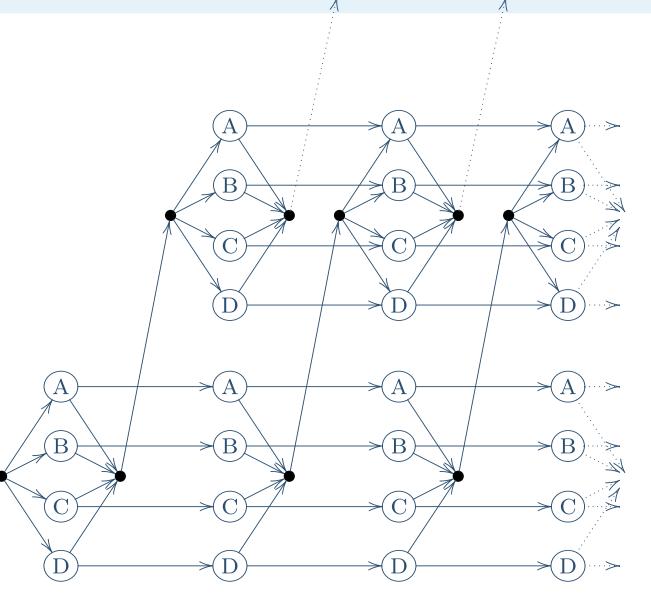
Hidden Markov Models

Bayes & Mixtures

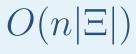
Fixed Share

Universal Share

Switch Distribution



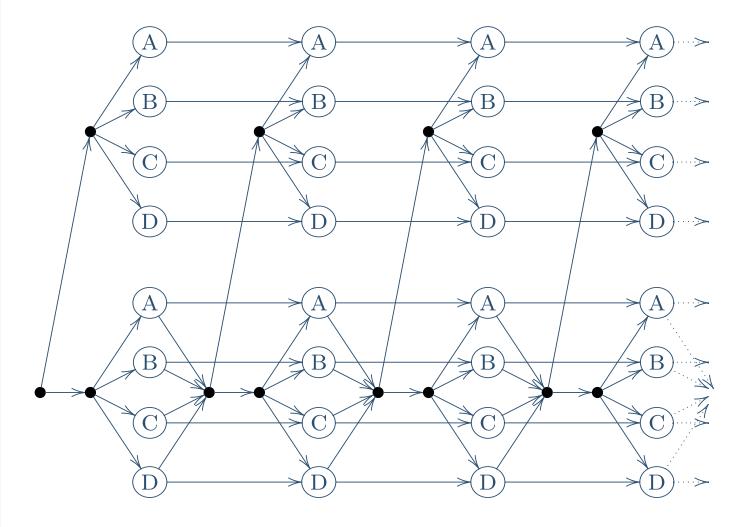
Switch Distribution

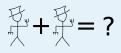


Strategies

HMMs

- Hidden Markov Models
- Bayes & Mixtures
- Fixed Share
- Universal Share
- Switch Distribution
- Conclusion





Conclusion

Introduction

Strategies

HMMs

Conclusion

Prediction with experts

- Model temporal evolution of best expert combination
- Intuitive graphical language
- Unifies existing algorithms
- HMM size ⇔ computational complexity
- Loss bounds
- New models

