Hedging Structured Concepts

Wouter M. KoolenManfred K. WarmuthJyrki KivinenCWI AmsterdamUC Santa CruzUniversity of Helsinki

Sunday 27 June, 2010

à la Carte

Prediction With Expert Advice

Structured Concepts

Component Hedge

Conclusion

 $\hfill\square$ Prediction With Expert Advice

Hedge algorithm

□ Structured Concepts

 $SC + Hedge \Rightarrow range factor problem$

 \Box Component Hedge

 $\mathsf{SC} + \mathsf{CH} \Rightarrow \mathsf{range}$ factor problem solved

 \Box Conclusion

Prediction With Expert Advice Prediction with ▷ Expert Advice The Hedge Algorithm

Structured Concepts

Component Hedge

Conclusion

 \Box Setting

- Several sources of predictions (experts)
- Choose an expert each trial (randomised)
- Incur loss of the selected expert (0/1)
- Observe loss of all experts (full information)

\Box Goal

- Cumulative loss close to the best expert
- Efficient algorithm

The Hedge Algorithm (Freund & Schapire 1997)

Prediction With Expert Advice Prediction with Expert Advice The Hedge ▷ Algorithm

Structured Concepts

Component Hedge

Conclusion

 \Box Maintains uncertainty as a distribution w_t on n experts w_1 is uniform

 \Box For each trial $t = 1, 2, \ldots$

- Select expert i with probability $w_{t,i}$
- Receive loss vector $\ell_t \in [0,1]^n$, incur loss $\ell_{t,i}$
- Expected loss $w_t \cdot \ell_t$
- Update $w_{t+1,i} \propto w_{t,i} eta^{\ell_{t,i}}$

$$\square$$
 With $\ell^{\mathsf{H}} = \sum_{t=1}^{T} w_t \cdot \ell_t$ and $\ell^{\star} = \min_i \sum_{t=1}^{T} \ell_{t,i}$,

$$\ell^{\mathsf{H}} - \ell^{\star} \leq \sqrt{2\ell^{\star} \ln n} + \ln n$$

Prediction With Expert Advice

Structured Concepts Structured Concepts Prediction with Structured Concepts Expanded Hedge Component Hedge

Conclusion

 $\hfill\square$ Concepts composed of components

concept	component
set	element
permutation	assignment
bipartite matchings	edges
spanning trees	edges
paths	edges

Prediction with Structured Concepts

Prediction With Expert Advice

Structured Concepts Structured Concepts Prediction with Structured Concepts Expanded Hedge

Component Hedge

Conclusion

 $\hfill\square$ Goal: on-line prediction with "combinatorial experts"

- Route planning: shortest path
- Media multicasting: directed spanning trees

Loss of concept is sum of losses of its components
 Helps: losses of concepts highly related
 Hurts: combinatorial explosion (many concepts)

Expanded Hedge (EH)

Prediction With Expert Advice

Structured Concepts Structured Concepts Prediction with Structured Concepts D Expanded Hedge

Component Hedge

Conclusion

 $\hfill\square$ Treat each structured concept as an expert

□ Run Hedge algorithm

 $\hfill\square$ Consider size k subsets of n elements

- Component loss in [0,1], so concept loss in [0,k].
- Number of concepts $\binom{n}{k} \approx n^k$.
- Regret bound

$$\ell^{\mathsf{EH}} - \ell^{\star} \leq \sqrt{2\ell^{\star}kk\ln n} + \frac{k}{k}k\ln n$$

– But lower bound has $k \ln n$. Range factor problem

Usages

Prediction With Expert Advice

Structured Concepts

Component Hedge

 \triangleright Usages

Usages Example

Expanded Hedge

Component Hedge

Component Hedge II

Implementation

Lower Bounds

Conclusion

□ Identify concepts with incidence vectors
□ Loss of C is C · ℓ (with ℓ component losses)
□ Randomly select a concept C with probability W_C
□ Expected loss is

$$\sum_{C} W_{C}(C \cdot \ell) = \underbrace{\left(\sum_{C} W_{C}C\right) \cdot \ell}_{\text{usage of } W}$$

 \Box Only the *usage* (i.e. mean concept) matters

Set of usages is the convex hull of concepts

Usages Example

Prediction With Expert Advice

Structured Concepts

Component Hedge

Usages

▷ Usages Example

Expanded Hedge

Component Hedge

Component Hedge II

Implementation

Lower Bounds

Conclusion

 $\hfill\square$ Sets of 2 out of 4 elements

$$\left\{ \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix} \right\}$$

 \Box The usage of the distribution (.3, .3, .2, .1, .1, 0) on sets

$$.3 \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix} + .3 \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix} + .2 \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} + .1 \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix} + .1 \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix} + .1 \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix} + 0 \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix} = \begin{pmatrix} .8\\.5\\.4\\.3 \end{pmatrix}$$

Prediction With Expert Advice

Structured Concepts

Component Hedge

Usages

Usages Example

 \triangleright Expanded Hedge

Component Hedge

Component Hedge II

Implementation

Lower Bounds

Conclusion

Two-step EH update

 $\widehat{W_{t+1}} = \operatorname{argmin}_{W} \triangle(W \| W_t) + \sum_{C} W_C(C \cdot \ell_t)$ $W_{t+1} = \operatorname{argmin}_{W \text{ a p.d.}} \triangle(W \| \widehat{W_{t+1}})$

 $\Delta(x\|y) = \sum_{i} x_i \ln \frac{x_i}{y_i} - x_i + y_i \qquad 10 / 15$

Prediction With Expert Advice

Structured Concepts

Component Hedge

Usages

Usages Example

Expanded Hedge

Component Hedge

Component

▷ Hedge II

Implementation

Lower Bounds

Conclusion

 \Box Let u_1 be the usage of the uniform distribution

 \Box For trial $t = 1, 2, \ldots$

– Decompose
$$u_t = \sum_i \alpha_i C_i$$

- Sample C_i with probability α_i
- Expected loss $u_t \cdot \ell_t$
- Update and relative entropy projection

 \Box Regret has no range factor. E.g. for *k*-of-*n* sets

$$\ell^{\mathsf{CH}} - \ell^{\star} \leq \sqrt{2\ell^{\star}k\ln n} + k\ln n$$

Implementation

Prediction With Expert Advice

Structured Concepts

Component Hedge

Usages

Usages Example

Expanded Hedge

Component Hedge

Component Hedge II

▷ Implementation

Lower Bounds

Conclusion

 \Box Usage vectors u_t are small

□ No closed form for relative entropy projection

$$u_{t+1} = \operatorname*{argmin}_{u \text{ a usage}} \Delta(u \| \widehat{u_{t+1}})$$

The usage polytope is the convex hull of exponentially many concepts. Fortunately, it can often be represented by polynomially many linear inequalities. E.g. Birkhoff and flow polytope.

□ Idea: iteratively reestablish most violated constraint

□ Known as Sinkhorn balancing for permutations

Lower Bounds

Prediction With Expert Advice

Structured Concepts

Component Hedge

Usages

Usages Example

Expanded Hedge

Component Hedge

Component Hedge II

Implementation

▷ Lower Bounds

Conclusion

CH is optimal: we have matching lower bounds for sets, permutations, bipartite matchings, spanning trees and paths.

 \Box In each case, reduction from the basic expert case.

Philosophy

Prediction With Expert Advice

Structured Concepts

Component Hedge

Conclusion

 \triangleright Philosophy

□ Uncertainty

- EH: Probability distribution on concepts
- CH: Convex combination of concepts

□ Relative entropy regularisation seems universal

- Possible to incorporate constraints into divergence
- But RE works in all cases