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Online Learning Challenges Everywhere
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Easy Data

We desire to make efficient online learning algorithms that adapt
automatically to the complexity of the environment.

I Worst-case rates in adversarial environments (safe and robust)

I Fast rates in favorable stochastic environments (practice)

This talk

I Review second-order individual sequence bounds
(Squint, MetaGrad)

I Review stochastic luckiness criteria
(Gap, Tsybakov, Massart, Bernstein)

I Result: second-order algorithms exploit stochastic luckiness
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Fundamental learning model: Hedge setting

I K experts

. . .

I In round t = 1, 2, . . .
I Learner plays distribution wt = (w1

t , . . . ,w
K
t ) on experts

I Adversary reveals expert losses `t = (`1t , . . . , `
K
t ) ∈ [0, 1]K

I Learner incurs loss wᵀ
t `t

I The goal is to have small regret

Rk
T :=

T∑
t=1

wᵀ
t `t︸ ︷︷ ︸

Learner

−
T∑
t=1

`kt︸ ︷︷ ︸
Expert k

with respect to every expert k .
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Classical Result

The Hedge algorithm with learning rate η

wk
t+1 :=

e−ηL
k
t∑

k e
−ηLkt

where Lkt =
t∑

s=1

`ks ,

upon proper tuning of η ensures [Freund and Schapire, 1997]

Rk
T ≺

√
T lnK for each expert k

which is tight for adversarial (worst-case) losses.



Squint [Koolen and Van Erven, 2015]
Notation For each expert k:

rkt = wᵀ
t `t − `kt Instantaneous regret

Rk
T =

∑T
t=1 r

k
t Cumulative regret

V k
T =

∑T
t=1(rkt )2 Uncentered variance of the excess loss

Fix prior π on experts. After T ≥ 0 rounds, Squint plays

wk
T+1 ∝ π(k)

∫ 1/2

0
exp

(
ηRk

T − η2V k
T

)
dη

Constant time per expert per round.

Squint ensures

Rk
T ≺

√
V k

T

(
− lnπ(k) + ln lnT

)
for each expert k .

Beats worst-case regret when V k
T = o(

√
T ).
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Fundamental Learning Model: Online Convex Optimization

I In round t = 1, 2, . . .
I Learner predicts wt (from unit ball)

I Encounter convex loss function ft(u) : Rd → R

I Learner
I observes gradient gt := ∇ft(wt) (from unit ball)

I incurs loss ft(wt)

I The goal is to have small regret

Ru
T :=

T∑
t=1

ft(wt)︸ ︷︷ ︸
Learner

−
T∑
t=1

ft(u)︸ ︷︷ ︸
Point u

with respect to every point u.
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Classical Result

Online gradient descent with learning rate η [Zinkevich, 2003]

wt+1 = wt − ηgt

recall gt = ∇ft(wt).

After T rounds, properly tuned OGD guarantees

Ru
T ≤ O


√√√√ T∑

t=1

‖gt‖2
 = O(

√
T ) for all u with ‖u‖ ≤ 1,

which is tight for adversarial losses.
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MetaGrad [Koolen and Van Erven, 2016]

MetaGrad learns the learning rate η by aggregating lnT instances
of Online Newton Step.

MetaGrad guarantees:

Ru
T ≤ O

(√
V u
T d lnT

)
where V u

T :=
T∑
t=1

(
(wt − u)ᵀgt

)2
Run-time O(d2 lnT ) per round. (Sketching, diagonal version, . . . )

Improves OGD, for by Cauchy-Schwarz:(
(wt − u)ᵀgt

)2 ≤ ‖wt − u‖2‖gt‖2



Recap

We saw two algorithms with bounds of the form

Rk
T ≺

√
V k

TK
k
T

and
Ru
T ≺

√
V u

TK
u
T

But when/how can we guarantee that either V T is small?



First step

Experts with gap. There are k∗ and α > 0 such that ∀k 6= k∗

α ≤ E
[
`k − `k

∗
]

[Gaillard et al., 2014] show that any algorithm with second-order
bound

Rk∗

T ≤
√
V k∗

T K k∗

T .

satisfies E[Rk∗

T ] = O(1).



Inspiration: Tsybakov margin condition for classification

Classification: Y ∈ {0, 1}.

P
(∣∣P(Y = 1|X )− 1/2

∣∣ ≤ t
)
≤ ctα

P(
Y

=
1|
X

)

 0

 0.5

 1

X

 0

 0.5

 1

X

 0

 0.5

 1

X

easy moderate hard
α =∞ α = 1 α = 0

Confusing case: predictors with equal risk but opposite
predictions.



Stochastic Luckiness Conditions

IID versions

I Massart condition, For B > 0 and ∀k:

E
[
(`k − `k

∗
)2
]
≤ B E

[
`k − `k

∗
]

I Bernstein condition. For B > 0, β ∈ [0, 1] and ∀k:

E
[
(`k − `k

∗
)2
]
≤ B E

[
`k − `k

∗
]β



Fast Rates using Massart

Applying the individual-sequence bound to k∗ gives, in expectation,

E
[
Rk∗

T

]
≺ E

[√
V k∗

T K k∗
T

]
Jensen

≤
√

E
[
V k∗

T

]
K k∗
T

Then

E
[
V k∗

T

]
=

T∑
t=1

E

(∑
k

wk
t `

k
t − `k

∗

t

)2


Jensen

≤
T∑
t=1

E
∑
k

wk
t E

[(
`kt − `k

∗

t

)2]
Massart

≤
T∑
t=1

E
∑
k

wk
t B E

[
`kt − `k

∗

t

]
= B E

[
Rk∗

T

]

and so E[Rk∗

T ] ≺
√

B E[Rk∗

T ]K k∗
T , hence E[Rk∗

T ] ≺ BK k∗
T = O(1).
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Bernstein for OCO

For experts we looked at

E
[
(`k − `k

∗
)2
]
≤ B E

[
`k − `k

∗
]β

∀k .

For stochastic OCO (with f ∼ P) we ask

E
[
〈w − u∗,∇f (w)〉2

]
≤ B E [〈w − u∗,∇f (w)〉]β ∀w.



Bernstein for OCO

For experts we looked at

E
[
(`k − `k

∗
)2
]
≤ B E

[
`k − `k

∗
]β

∀k .

For stochastic OCO (with f ∼ P) we ask

E
[
〈w − u∗,∇f (w)〉2

]
≤ B E [〈w − u∗,∇f (w)〉]β ∀w.



Examples where Bernstein applies, 1/2

I Unregularized hinge loss on unit ball.
I Data (xt , yt) ∼ P i.i.d.
I Hinge loss ft(u) = max{0, 1− ytx

ᵀ
t u}.

I Mean µ = E[yx] and second moment D = E[xxᵀ].
I Bernstein with β = 1 and B =

2λmax(D)
‖µ‖



Examples where Bernstein applies, 2/2

I Absolute loss:
ft(u) = |u − xt |

where xt = ±1
2 i.i.d. with probability 0.4 and 0.6.

 0

 1

-1  1

 0.5

 1

-1  1

Individual functions Long-term average

Bernstein with β = 1 and B = 5.



Main result

Theorem
In any stochastic setting satisfying the (B, β)-Bernstein Condition,
the guarantees for Squint and for MetaGrad

RθT ≤
√
V θ

TK
θ
T for all θ ∈ Θ

imply fast rates for the respective algorithms both in expectation
and with high probability. That is,

E[Rθ
∗

T ] = O

(
K

1
2−β

T T
1−β
2−β

)
,

and for any δ > 0, with probability at least 1− δ,

Rθ
∗

T = O
(

(KT − ln δ)
1

2−βT
1−β
2−β

)
.



High probability, sketch 1/4

Fix xθ ∈ [−1, 1] and θ ∈ Θ. Bernstein

E
[
(xθ)2

]
≤ B E

[
xθ
]β

for all θ ∈ Θ

implies the Central condition [Van Erven et al., 2015]

1

η
lnE

[
e−ηx

θ
]
≤ O(η

1
1−β ) for all η ≥ 0



High probability, sketch 2/4

We show

1

η
lnE

[
e−ηx

θ
]
≤ O(η

1
1−β ) for all η ≥ 0

implies (for c ≈ 1
2)

1

η
lnE

[
ecη

2(xθ)2−ηxθ
]
≤ O(η

1
1−β ) for all η ≥ 0

Telescope to

1

η
lnE

[
e
∑T

t=1 cη
2(xθ)2−ηxθ

]
≤ O(Tη

1
1−β ) for all η ≥ 0



High probability, sketch 3/4

Combining

1

η
lnE

[
ecη

2V θ
T−ηR

θ
T

]
≤ O(Tη

1
1−β ) for all η ≥ 0

with the individual sequence regret bound

RθT ≤ 2
√

V θ
TK

θ
T = inf

η

{
ηV θ

T +
K θ
T

η

}
so that

2ηRθT ≤
η2

2
V θ
T + 8K θ

T

gives (using c ≈ 1/2)

1

η
lnE

[
eηR

θ
T−8Kθ

T

]
≤ O(Tη

1
1−β ) for all η ≥ 0



High probability, sketch 4/4

By Markov

1

η
lnE

[
eηR

θ
T−8Kθ

T

]
≤ O(Tη

1
1−β ) for all η ≥ 0

implies with high probability

ηRθT ≤ 8K θ
T + Tη

1
1−β

and optimally tuning η results in

RθT ≤ O

(
K

1
2−β

T T
1−β
2−β

)
.



Conclusion

We showed that Squint and MetaGrad (online learning algorithms
with second-order bounds) adapt to Bernstein stochastic luckiness.

The results extend

I Non-iid. Only need the Bernstein condition conditionally.
There are k∗, B > 0 and β ∈ [0, 1] such that

E
[
(`kt − `k

∗

t )2
∣∣∣past

]
≤ B E

[
`kt − `k

∗

t

∣∣∣past
]β

∀k∀t.

E.g. algorithmic information theory setting.



Thank you!


