Efficient Minimax Strategies for Square Loss Games

Wouter M. Koolen Alan Malek Peter L. Bartlett

QU Queensland University of Technology

Berkeley

Large-scale Online Learning and Decision Making Workshop September 11, 2014

Motivation

- Interested in foundations of OLDM.
- Learning formulated as sequential game of regret minimisation.
- Minimax optimal strategy
- known in a few cases (NML, GDE, L^{*}-experts, ...)
- tractable in even fewer

Motivation

- Interested in foundations of OLDM.
- Learning formulated as sequential game of regret minimisation.
- Minimax optimal strategy
- known in a few cases (NML, GDE, L^{*}-experts, ...)
- tractable in even fewer
- We stumbled across two natural games with efficient minimax solutions.
- So efficient that we dared to submit to LSOLDM.

Outline

Brier game

Ball game

Diamond game

Conclusion

Section 1

Brier game

Brier game: weather prediction example

Brier loss

Brier loss equals squared Euclidean distance between $a, x \in \triangle$:

$$
\|a-x\|^{2}=(a-x)^{\top}(a-x)
$$

Square loss is proper, convex, and bounded.

Objective: close to best prediction

Learner $\begin{array}{lllll}a_{1} & a_{2} & \ldots & a_{T}\end{array}$
Nature $\begin{array}{lllll}x_{1} & x_{2} & \ldots & x_{T}\end{array}$

Regret $:=\sum_{t=1}^{T}\left\|a_{t}-x_{t}\right\|^{2}-\min _{a} \sum_{t=1}^{T}\left\|a-x_{t}\right\|^{2}$

Minimax regret

Problem:

$$
\min _{a_{1}} \max _{x_{1}} \ldots \min _{a_{T}} \max _{x_{T}}\left(\sum_{t=1}^{T}\left\|a_{t}-x_{t}\right\|^{2}-\min _{a} \sum_{t=1}^{T}\left\|a-x_{t}\right\|^{2}\right)
$$

Minimax regret

Problem:

$$
\min _{a_{1}} \max _{x_{1}} \ldots \min _{a_{T}} \max _{x_{T}}\left(\sum_{t=1}^{T}\left\|a_{t}-x_{t}\right\|^{2}-\min _{a} \sum_{t=1}^{T}\left\|a-x_{t}\right\|^{2}\right)
$$

Game-theoretic analysis gives us:

- Minimax strategy a_{t}
- Maximin strategy x_{t}
- Value of the game (minimax regret).

Recurrence

Value-to-go:

$$
\begin{aligned}
V\left(x_{1}, \ldots, x_{T}\right) & :=-\min _{a} \sum_{t=1}^{T}\left\|\boldsymbol{a}-x_{t}\right\|^{2} \\
V\left(x_{1}, \ldots, x_{t-1}\right) & :=\min _{a_{t}} \max _{x_{t}}\left(\left\|a_{t}-x_{t}\right\|^{2}+V\left(x_{1}, \ldots, x_{t}\right)\right)
\end{aligned}
$$

The minimax regret equals value-to-go $V(\epsilon)$ from empty history.
Our approach: manual backwards induction...

Crux

For each $0 \leq t \leq T$ the value-to-go

$$
V\left(x_{1}, \ldots, x_{t}\right)
$$

is quadratic function of simple statistics

$$
\sum_{s=1}^{t} x_{s} \quad \text { and } \quad \sum_{s=1}^{t} x_{s}^{\top} x_{s}
$$

Idea: proof by induction. Base case $t=T$ is easy. Induction step hinges on single-round min-max solution.

Consequences I

In the state $\left(x_{1}, \ldots, x_{n}\right)$ with statistics $s=\sum_{t=1}^{n} x_{t}$ and $\sigma^{2}=\sum_{t=1}^{n} x_{t}^{\top} x_{t}$ the Brier game on \triangle_{d} has value-to-go

$$
V\left(s, \sigma^{2}\right)=\alpha_{n} s^{\top} s-\sigma^{2}+\text { const }_{n}
$$

and minimax and maximin strategies given by

$$
a^{*}\left(s, \sigma^{2}\right)=p^{*}\left(s, \sigma^{2}\right)=\frac{\mathbf{1}}{d}+\alpha_{n+1}\left(s-n \frac{\mathbf{1}}{d}\right)
$$

with coefficients defined recursively by

$$
\alpha_{T}=\frac{1}{T} \quad \alpha_{n-1}=\alpha_{n}^{2}+\alpha_{n}
$$

Consequences II

- Minimax shrinks Follow-the-Leader towards uniform:

- Computation: $O(T)$ pre-processing, then $O(d)$ per round.
- The regret is at most

$$
1+\ln (T)
$$

- Mixed data points are friendly.

Extension: Mahalanobis loss

Gravity of errors differs among dimensions.
Technical tool: generalise squared Euclidean distance

$$
\|a-x\|^{2}=(a-x)^{\top}(a-x)
$$

to squared Mahalanobis distance (proper!)

$$
\|a-x\|_{W}^{2}=(a-x)^{\top} W^{-1}(a-x)
$$

for some fixed coefficient matrix $W \succ \mathbf{0}$.

All results scale up (under simplex alignment condition on W).

Section 2

Ball game

$$
0
$$

Ball game

Ball game

Ball game

Minimax regret

Problem:

$$
\min _{a_{1}} \max _{x_{1}} \ldots \min _{a_{T}} \max _{x_{T}}\left(\sum_{t=1}^{T}\left\|a_{t}-x_{t}\right\|_{W}^{2}-\min _{a} \sum_{t=1}^{T}\left\|a-x_{t}\right\|_{W}^{2}\right)
$$

Note: Brier and Ball game only differ in domain of a_{t} and x_{t}

Minimax analysis

Consider the ball game with loss $\|a-x\|_{W}^{2}$. The value-to-go for state $\left(x_{1}, \ldots, x_{n}\right)$ with statistics $s=\sum_{t=1}^{n} x_{t}$ and $\sigma^{2}=\sum_{t=1}^{n} x_{t}^{\top} W^{-1} x_{t}$ is

$$
V\left(s, \sigma^{2}\right)=s^{\top} \boldsymbol{A}_{n} s-\sigma^{2}+\text { const }_{n} .
$$

The minimax strategy plays

$$
\boldsymbol{a}^{*}\left(s, \sigma^{2}\right)=\left(W^{-1}+\lambda_{\max } \boldsymbol{I}-\boldsymbol{A}_{n+1}\right)^{-1} \boldsymbol{A}_{n+1} s
$$

and the maximin strategy plays two unit length vectors with

$$
\operatorname{Pr}\left(x=a_{\perp} \pm \sqrt{1-a_{\perp}^{\top} a_{\perp}} v_{\max }\right)=\frac{1}{2} \pm \frac{1}{2} \sqrt{\frac{a_{\|}^{\top} a_{\|}}{1-a_{\perp}^{\top} a_{\perp}}}
$$

where $\lambda_{\text {max }}$ and $\boldsymbol{v}_{\text {max }}$ correspond to the largest eigenvalue of \boldsymbol{A}_{n+1} and a_{\perp} and $a_{\|}$are the components of a^{*} perpendicular and parallel to $\boldsymbol{v}_{\text {max }}$. The coefficients \boldsymbol{A}_{n} are determined recursively by base case $\boldsymbol{A}_{T}=\frac{1}{T} W^{-1}$ and recursion

$$
\boldsymbol{A}_{n-1}=\boldsymbol{A}_{n}\left(W^{-1}+\lambda_{\max } \boldsymbol{I}-\boldsymbol{A}_{n}\right)^{-1} \boldsymbol{A}_{n}+\boldsymbol{A}_{n}
$$

The eigenvalue warp

Brier game had uniform shrinkage.
For ball game shrinkage rate depends on dimension.

Ball game consequences

- Regret bounded by $\lambda_{\max }\left(W^{-1}\right)(1+\ln (T))$.
- Computation: $O\left(T d+d^{3}\right)$ pre-processing, $O\left(d^{2}\right)$ per round.
- Outcomes in ball interior are friendly.

Section 3

Diamond game

Counterexample: diamond game

$W=\boldsymbol{I}$ case (accidentally?) works out; value-to-go is quadratic. $W \neq I$ case fails. Complexity of value-to-go function explodes.

Section 4

Conclusion

Conclusion

- Two games where the minimax strategy can be followed in amortised constant computation per round.
- Value-to-go quadratic function of statistic
- Minimax strategy linear in statistic (Follow-the-Leader with subtle shrinkage)

What next

- Characterise interplay of action/outcome sets and loss that results in simple value-to-go function (conjugacy)
- Reduce other similar losses to square loss
- Consider other notions of "squared distance". (Bregman)
- Add covariates (regression)
- Consider non-stationarity
- Other losses (PCA, @\#\$! hard)
- Horizon-free/anytime algorithms

Thank you!

