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Introduction

The open problem (Warmuth, COLT 2007)

Recent interest in matrix generalizations of classical prediction tasks:

Matrix Hedge (PCA)

Matrix Winnow (learning subspaces)

Matrix Exponentiated Gradient (regression)

In each case the matrix generalizations of classical algorithms have
performance guarantees (worst-case regret bounds) identical to the
classical tasks

Symmetric matrices have n2 parameters and vectors n parameters. Thus
matrices should be harder to learn!

What is going on? Are classical bounds loose, or is there a

Free Matrix Lunch?
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Introduction

This talk I

Fundamental task: predicting n-ary sequence with logarithmic loss

Strong intuition from several interpretations
probability forecasting - data compression - investment

Algorithms derived from various principles
Bayesian inference - universal coding - optimization - minimax

Popular. Extremely well-studied. Simple. Often one-line proofs.

We generalise the problem and lift the algorithms to the matrix domain.

We prove and explain a

Free Matrix Lunch!
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Introduction

This talk II

We then consider the second fundamental Hedge or dot loss setting.

Here we show matrix prediction is strictly harder

Free Matrix Lunch!
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Classical Log Loss

Outline

1 Introduction

2 Classical Log Loss

3 Matrix Log Loss

4 Trace Loss Counterexample

5 Conclusion
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Classical Log Loss

Probability vector prediction

for trial t = 1, 2, . . . do
Alg predicts with probability vector ωt

Nat returns basis vector xt ∈ {e1, . . . , en}
Alg incurs loss − log (ω>t xt)

end for
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Classical Log Loss

Evaluation

Regret is loss of Alg minus the loss of the best fixed prediction:

RT :=
T∑
t=1

− log (ω>t xt)− inf
ω

T∑
t=1

− log (ω>xt) .

In this problem we compete with the empirical Shannon entropy:

inf
ω

T∑
t=1

− log (ω>xt) = T H (ω∗) where ω∗ =

∑T
t=1 xt

T

ω∗ is the maximum likelihood estimator

Goal: design online algorithms with low worst-case regret
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Classical Log Loss

Algorithms

For the Laplace predictor

ωt+1 :=

∑t
q=1 xq + 1

t + n
RT ≤ (n − 1) log(T + 1)

whereas for the Krychevsky-Trofimoff predictor

ωt+1 :=

∑t
q=1 xq + 1/2

t + n/2
RT ≤

n − 1

2

(
log(T + 1) + log(π)

)

Other algorithms include

Last Step Minimax RT ≤
n − 1

2
log(T + 1) + 1

Shtarkov RT ≤
n − 1

2

(
log(T + 1)− log(n − 2) + 1

)
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Matrix Log Loss

Outline

1 Introduction

2 Classical Log Loss

3 Matrix Log Loss

4 Trace Loss Counterexample

5 Conclusion
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Matrix Log Loss

Density matrix prediction

for trial t = 1, 2, . . . do
Alg predicts with density matrix Wt

Nat returns dyad xtx
>
t

Alg incurs loss −x>t log(Wt)xt

end for
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Matrix Log Loss

The outcomes: dyads

A dyad xx> is a rank-one matrix, where x is a vector in Rn of unit length.

A dyad is a classical outcome in an arbitrary orthonormal basis:

xx> = U>

1 0 0
0 0 0
0 0 0

U
There are continuously many dyads.
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Matrix Log Loss

The predictions: density matrices

A density matrix W is a convex combination of dyads.

Positive-semidefinite matrix W of unit trace

A density matrix is a probability vector in an arbitrary orthonormal basis:

Decomposition:

W =
n∑

i=1

αi aia
>
i

eigenvalues α probability vector
eigenvectors ai orthonormal system

Note: different convex combinations of dyads may result in the same
density matrix.
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Matrix Log Loss

The loss: matrix log loss

The logarithm of a density matrix W =
∑

i αiaia
>
i is defined by

log(W ) =
∑
i

log(αi )aia
>
i .

Discrepancy between prediction W and dyad xx>: matrix log loss

−x>log(W )x
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Matrix Log Loss

The classical case

If Alg and Nat play in the same eigensystem, say

W =
∑
i

ωieie
>
i and x = ej

then matrix log loss becomes classical log loss

−x> log(W )x = −x>
∑
i

log(ωi )eie
>
i x = − log(αj) = − log(ω>x)

But both players can deviate. Who is to gain?
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Matrix Log Loss

Matrix log loss is proper

The Von Neumann or Quantum entropy

H(A) = − tr(A logA)

equals the Shannon entropy of eigenvalues α of A.

We now compete with the empirical Von Neumann entropy:

inf
W

T∑
t=1

−x>t log(W )xt = T H (W ∗) where W ∗ =

∑T
t=1 xtx

>
t

T
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Matrix Log Loss

Matrix Algorithms

Matrix Laplace predicts with Wt+1 =

argmin
W

 − tr(logW )︸ ︷︷ ︸
n uniform outcomes

+
t∑

q=1

−x>q log(W )xq

 =

∑t
q=1 xqx

>
q + I

t + n

and Matrix KT predicts with Wt+1 =

argmin
W

 −
1

2
tr(logW )︸ ︷︷ ︸

n
2

uniform outcomes

+
t∑

q=1

−x>q log(W )xq

 =

∑t
q=1 xqx

>
q + I/2

t + n/2
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Matrix Log Loss

Two Free Matrix Lunches

Theorem

Classical and matrix worst-case regrets coincide for Laplace and for KT.

Proof for Laplace.
Let W ∗

t denote the best density matrix for the first t outcomes. The regret of matrix Laplace
can be bounded as follows:

RT =
T∑
t=1

`(Wt ,xtx
>
t )−

T∑
t=1

`(W ∗
T ,xtx

>
t ) ≤

T∑
t=1

(
`(Wt ,xtx

>
t )− `(W ∗

t ,xtx
>
t )
)
. (1)

Now consider the tth term in the right-hand sum. With St =
∑t

q=1 xqx>q

−x>t
(
log

St−1 + I

t − 1 + n
− log

St

t

)
xt = log

(
t − 1 + n

t

)
− x>t

(
log(St−1 + I)− logSt

)
xt .

The matrix part is non-positive since St−1 + I � St , and the logarithm is matrix monotone. It
is zero for any sequence of identical dyads and (1) holds with equality since W ∗

t = W ∗
T for all

t ≤ T . The same upper bound is also met by classical Laplace on any sequence of identical
outcomes.

Any sequence of dyads not in same eigensystem is suboptimal for Nat
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Matrix Log Loss

But why...?

If Alg plays Laplace or KT, then Nat will never go out-eigensystem.

The classical case is the worst case.

Best eigenvectors are observed. No regret.

If Alg plays in the eigensystem of past data, will Nat do too?

For matrix log loss: only pathological counterexamples

For other losses: real counterexamples
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Matrix Log Loss

Shtarkov: The Queen of Lunches

In the classical case the minimax algorithm is due to Shtarkov.

Ultimate open problem: is the classical minimax regret

min
ω1

max
x1

· · ·min
ωT

max
xT

T∑
t=1

− log (ω>t xt)− T H

(∑T
t=1 xt

T

)

equal to the matrix minimax regret

min
W1

max
x1

· · ·min
WT

max
xT

T∑
t=1

−x>t log(Wt)xt − T H

(∑T
t=1 xtx

>
t

T

)

Only numerical evidence for this claim and intermediate conjectures.
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Trace Loss Counterexample

Outline

1 Introduction

2 Classical Log Loss

3 Matrix Log Loss

4 Trace Loss Counterexample

5 Conclusion
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Trace Loss Counterexample

The story for trace loss

The Free Matrix Lunch depends on the choice of loss.

The dot loss generalises to the trace loss:

`(ω, l) = ω>l `(W ,L) = tr(WL)

for l ∈ {0, 1}n and symmetric L with eigenvalues in {0, 1}n.

Hedge and Matrix Hedge

ωt = ωt−1e−ηlt/Zt Wt = exp(logWt−1 − ηLt)/Zt

with tuned learning rate η both have regrets bounded by√
T log n

2
as well as

√
2L∗ log n + log n.

Koolen, Kot lowski, Warmuth (RHUL) The Free Matrix Lunch Tuesday 24th April, 2012 21 / 26



Trace Loss Counterexample

The story for trace loss

The Free Matrix Lunch depends on the choice of loss.

The dot loss generalises to the trace loss:

`(ω, l) = ω>l `(W ,L) = tr(WL)

for l ∈ {0, 1}n and symmetric L with eigenvalues in {0, 1}n.

Hedge and Matrix Hedge

ωt = ωt−1e−ηlt/Zt Wt = exp(logWt−1 − ηLt)/Zt

with tuned learning rate η both have regrets bounded by√
T log n

2
as well as

√
2L∗ log n + log n.

Koolen, Kot lowski, Warmuth (RHUL) The Free Matrix Lunch Tuesday 24th April, 2012 21 / 26



Trace Loss Counterexample

The story for trace loss

The Free Matrix Lunch depends on the choice of loss.

The dot loss generalises to the trace loss:

`(ω, l) = ω>l `(W ,L) = tr(WL)

for l ∈ {0, 1}n and symmetric L with eigenvalues in {0, 1}n.

Hedge and Matrix Hedge

ωt = ωt−1e−ηlt/Zt Wt = exp(logWt−1 − ηLt)/Zt

with tuned learning rate η both have regrets bounded by√
T log n

2
as well as

√
2L∗ log n + log n.

Koolen, Kot lowski, Warmuth (RHUL) The Free Matrix Lunch Tuesday 24th April, 2012 21 / 26



Trace Loss Counterexample

No free lunch for trace loss

In dimension n = 2 the minimax regrets for T trials are√
T + 1

2π

√
T

4

Far from a free lunch.

The matrix case is different and easier to analyse:

Alg predicts deterministically in past eigensystem

Nat plays Hadamard (worse than classical randomisation)

We submitted the case n > 2 as an open problem to COLT 2012.
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Conclusion
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Conclusion

Summary

Matrix log loss

Learning a matrix of n2 parameters with regret for n
Eigenvectors are learned for free
Classical data is worst-case

Trace loss

No free matrix lunch
Nat exploits matrix power
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Conclusion

Many open problems

Does the free matrix lunch hold for the matrix minimax algorithm?
cf. Shtarkov

Same questions for other losses

What properties of the loss function and algorithm cause the free
matrix lunch to occur? Proper scoring rules?

Is there a general regret-bound preserving lift of classical algorithms
to matrix log loss prediction?
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Conclusion

Thank you!
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