Shifting Experts on Easy Data

Manfred K. Warmuth Wouter M. Koolen

Eternal Dilemma

Huge Difference (Expert Setting Example)

Holy Grail

Adaptive

Status Quo

Experts	Hedge	FTL/ERM	FlipFlop
Bandits	EXP3	UCB	SAO
Shifting	Fixed Share	?	?
Freund's Problem	Mixing Past Posteriors	?	?

Shifting

Best model (expert) changes over time.

- Optimal algorithm for segment-wise IID data? Should pay O(In #experts) per switch
- ▶ How to combine it with worst-case robustness?

Freund's Problem: Long-term Memory

- ▶ Optimal algorithm for segment-wise IID data? Should pay O(ln #good experts) per switch
- ▶ How to combine it with worst-case robustness?

Candidate Algorithms

For IID shifting:

- FL on the best partition
- FL on a shifting window
- FL on capped loss differences
- ▶ FL on exponentially decaying losses
- **.** . . .

For IID long-term memory?

The Big Question

Single algorithm for shifting

- worst-case robust
- adaptive to IID data

