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About me

I Work in machine learning ...

I .. but generally interested in most of computer science

I Fervent programmer

I Computer architecture as a hobby

I Author of SIM-PL simulator for digital hardware

http://www.science.uva.nl/amstel/SIM-PL

http://www.science.uva.nl/amstel/SIM-PL
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What do I expect of you / What would really help

You ...

I want to learn

I have seen a digital circuit (e.g. gate, adder, flip-flop).

I wrote a program (e.g. if, goto, increment)

I are not mortally afraid of bits and hexadecimal

I ...

I will provide trick questions to guide your thinking

And most importantly ...

You raise your hand when you get lost
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What do I expect of you / What would really help

You ...

I want to learn

I have seen a digital circuit (e.g. gate, adder, flip-flop).

I wrote a program (e.g. if, goto, increment)

I are not mortally afraid of bits and hexadecimal

I ...

I will provide trick questions to guide your thinking

And most importantly ...

You raise your hand when you get lost
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Goal of this lecture

I present the simplest processor

Understanding
I hardware design

I You can do it too
I Baseline for more complex designs
I Many (esoteric) designs found niches

I execution of software
I Programming (e.g. embedded devices)
I Compiler architecture
I The why of hardware eccentricities
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Goal of this lecture
Pierce layers of abstraction

Transistor

Gate

Boolean circuit

Arithmetic circuit

Stateful circuit

Memory

Calculator

Processor

Assembly language

C

Assembler

Compiler



Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Calculator

Goal

I 16 variables (memory cells)

I program (list of instructions)

I 4 operations

Instruction set
ADD, SUB, AND, COPY

Example program
0: ADD $6, $3, $4 Set Reg6 to Reg3 + Reg4
1: SUB $7, $3, $4 Set Reg7 to Reg3 − Reg4
2: COPY $8, $6 Set Reg8 to Reg6
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Calculator

Goal

I 16 variables (memory cells)

I program (list of instructions)

I 4 operations

Instruction set
ADD, SUB, AND, COPY

Example program
0: ADD $6, $3, $4 Set Reg6 to Reg3 + Reg4
1: SUB $7, $3, $4 Set Reg7 to Reg3 − Reg4
2: COPY $8, $6 Set Reg8 to Reg6
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Implementation: the hardware circuit
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The driving force

Purpose: Synchronise operation of components

I Usually some kind of oscillating crystal

I  Clock 

I High and low levels

I Positive (up) edge and negative (down) edge

I A clock cycle is: up – high – down – low
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Program counter

Purpose: maintain the current position in the program

I One address

I Increment triggered by positive clock edge
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Instruction memory

Purpose: store the program

I 16 bit address

I 14 bit data
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Registers
Purpose: maintain the state of program variables

I 16 registers named $0, $1, ..., $15
I 16 bits each
I Two read ports
I One write port (triggered by negative clock edge)
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Arithmetic logic unit (ALU)

Purpose: performs computation

S0 S1 output

0 0 A + B
0 1 A− B
1 0 A & B
1 1 B

I 2 bits to select operation
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Calculator: the circuit
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In action

Say $3 initially contains 7, while $4 contains 5.

0: ADD $6, $3, $4 Set Reg6 to Reg3 + Reg4
1: SUB $7, $3, $4 Set Reg7 to Reg3 - Reg4
2: COPY $8, $6 Set Reg8 to Reg6
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In action

Say $3 initially contains 7, while $4 contains 5.

0: ADD $6, $3, $4 Set Reg6 to Reg3 + Reg4
1: SUB $7, $3, $4 Set Reg7 to Reg3 - Reg4
2: COPY $8, $6 Set Reg8 to Reg6
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In action

Say $3 initially contains 7, while $4 contains 5.

0: ADD $6, $3, $4 Set Reg6 to Reg3 + Reg4
1: SUB $7, $3, $4 Set Reg7 to Reg3 - Reg4
2: COPY $8, $6 Set Reg8 to Reg6
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In action

Say $3 initially contains 7, while $4 contains 5.

0: ADD $6, $3, $4 Set Reg6 to Reg3 + Reg4
1: SUB $7, $3, $4 Set Reg7 to Reg3 - Reg4
2: COPY $8, $6 Set Reg8 to Reg6
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Summary

Calculator

I 16 memory cells

I 4 operations

I Executes program (list of instructions) sequentially

I Timing



Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

(Trick) questions

I Why does an instruction take 14 bits of memory?

I Is COPY $1, $1 safe?

I What about ADD $1, $1, $1?

I Can we increment a register? How?

I Can we multiply 2 registers? How?

I Can we execute an if statement? How?
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Immediates

Goal
Use of immediates (constants) in instructions

Instruction set
ADD, SUB, AND, COPY, ADDI, SUBI, ANDI, LOADI

Example program
0: LOADI $1, 0x3000 Load 3000hex in Reg1
1: LOADI $2, 0x2000 Load 2000hex in Reg2
2: SUB $3, $1, $2 Set Reg3 to Reg1 - Reg2
3: ADDI $4, $3, 0x200 Set Reg4 to Reg3 + 0200hex
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Immediates

Goal
Use of immediates (constants) in instructions

Instruction set
ADD, SUB, AND, COPY, ADDI, SUBI, ANDI, LOADI

Example program
0: LOADI $1, 0x3000 Load 3000hex in Reg1
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Immediates

Goal
Use of immediates (constants) in instructions

Instruction set
ADD, SUB, AND, COPY, ADDI, SUBI, ANDI, LOADI

Example program
0: LOADI $1, 0x3000 Load 3000hex in Reg1
1: LOADI $2, 0x2000 Load 2000hex in Reg2
2: SUB $3, $1, $2 Set Reg3 to Reg1 - Reg2
3: ADDI $4, $3, 0x200 Set Reg4 to Reg3 + 0200hex
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Implementing immediates

Do we use an immediate?
Immediate value
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Multiplexer

Purpose: channel chooser

S output

0 A
1 B

I 1 bit to select which input is passed on
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Immediates in action

0: LOADI $1, 0x3000 Load 3000hex in Reg1
1: LOADI $2, 0x2000 Load 2000hex in Reg2
2: SUB $3, $1, $2 Set Reg3 to Reg1 - Reg2
3: ADDI $4, $3, 0x200 Set Reg4 to Reg3 + 0200hex
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Immediates in action

0: LOADI $1, 0x3000 Load 3000hex in Reg1
1: LOADI $2, 0x2000 Load 2000hex in Reg2
2: SUB $3, $1, $2 Set Reg3 to Reg1 - Reg2
3: ADDI $4, $3, 0x200 Set Reg4 to Reg3 + 0200hex
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Immediates in action

0: LOADI $1, 0x3000 Load 3000hex in Reg1
1: LOADI $2, 0x2000 Load 2000hex in Reg2
2: SUB $3, $1, $2 Set Reg3 to Reg1 - Reg2
3: ADDI $4, $3, 0x200 Set Reg4 to Reg3 + 0200hex
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Immediates in action

0: LOADI $1, 0x3000 Load 3000hex in Reg1
1: LOADI $2, 0x2000 Load 2000hex in Reg2
2: SUB $3, $1, $2 Set Reg3 to Reg1 - Reg2
3: ADDI $4, $3, 0x200 Set Reg4 to Reg3 + 0200hex
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Immediates in action

0: LOADI $1, 0x3000 Load 3000hex in Reg1
1: LOADI $2, 0x2000 Load 2000hex in Reg2
2: SUB $3, $1, $2 Set Reg3 to Reg1 - Reg2
3: ADDI $4, $3, 0x200 Set Reg4 to Reg3 + 0200hex

0

1200

1200

3

0

4

0003 03040200

FFFF
0200

1000

0200

0200

0

0

0

0



Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Summary

I A little more hardware ...

I ... to allow immediates as last argument

I Immediates part of instruction
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(Trick) questions

I How many bits do we need for each instruction?

I Can we increment a register? How?

I Can we execute ADDII $1, 0x1, 0x2? How?

I Can we multiply 2 registers? How?

I Can we execute an if statement? How?
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Conditional execution and jumps

Goal
Implement if/else, switch, for, while, goto ...

Instruction set
ADD(I), SUB(I), AND(I), COPY, LOADI, BRA, BZ, BEQ

Example program
LOADI a, 8 # a = 8;

LOADI b, 4 # b = 4;

LOADI r, 0 # r = 0;

loop:

BZ b, end # while (b != 0) {

ADD r, r, a # r += a;

SUBI b, b, 1 # --b;

BRA loop # }

end:
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Conditional execution and jumps

Goal
Implement if/else, switch, for, while, goto ...

Instruction set
ADD(I), SUB(I), AND(I), COPY, LOADI, BRA, BZ, BEQ

Example program
LOADI a, 8 # a = 8;

LOADI b, 4 # b = 4;

LOADI r, 0 # r = 0;

loop:

BZ b, end # while (b != 0) {

ADD r, r, a # r += a;

SUBI b, b, 1 # --b;

BRA loop # }

end:
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Implementing jumps

Do we jump?
Where do we jump to?
Do we write to register?
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Arithmetic logic unit (ALU)

Purpose: performs computation and tests

S0 S1 output

0 0 A + B
0 1 A− B
1 0 A & B
1 1 B

I 2 bits to select operation

I Zero bit is set when output is zero
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Summary

I A bunch more hardware
I Hardware executes a branch when

I Instruction is a branch instruction
I Test succeeds (ALU outputs zero)

I Target of jump is encoded in instruction
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(Trick) questions

I How many bits do we need for each instruction?

I How can we test for (with A and B registers)

A = 0 A = 1 A = B A 6= B A < B

I Can we multiply 2 registers? How?

I Can we execute an if statement? How?

I Can we execute an if/else statement? How?

I Is Branch the negation of RegWrite?
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More/main memory

Goal
Add memory. We add 216 = 65536 variables

Instruction set
ADD(I), SUB(I), AND(I), COPY, LOADI, BRA, BZ, BEQ,
LW, SW

Example program
LW $1, 10, $6 # Load mem[Reg6 + 10] into Reg1

SW $2, 10, $6 # Store $2 into mem[Reg6 + 10]
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Goal
Add memory. We add 216 = 65536 variables

Instruction set
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LW, SW

Example program
LW $1, 10, $6 # Load mem[Reg6 + 10] into Reg1

SW $2, 10, $6 # Store $2 into mem[Reg6 + 10]
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More/main memory

Goal
Add memory. We add 216 = 65536 variables

Instruction set
ADD(I), SUB(I), AND(I), COPY, LOADI, BRA, BZ, BEQ,
LW, SW

Example program
LW $1, 10, $6 # Load mem[Reg6 + 10] into Reg1

SW $2, 10, $6 # Store $2 into mem[Reg6 + 10]
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Implementing main memory

Do we read from/write to memory?
Write what where? Value read?
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Summary

I We simply “bolted on” some memory

I Both in hardware

I And in software
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(Trick) questions

I How many bits do we need for each instruction?

I Why not simply increase the number of registers?

I Can we perform a computation (say A + B) and write
the result to memory using a single instruction?

I Can we execute an if statement? How?

I What if we want more than 216 = 65536 variables?

I Can a program modify itself? (polymorphic code)
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Procedure calls

Goal
Re-use blocks of code

Instruction set
ADD(I), SUB(I), AND(I), COPY, LOADI, BRA, BZ, BEQ,
LW, SW, CALL, RETURN

Example program
LOADI $arg1, 1

LOADI $arg2, 2

LOADI $arg3, 3

CALL $ra, Add3

#--------------- Add3 procedure -----------------

Add3:

ADD $val1, $arg1, $arg2

ADD $val1, $val1, $arg3

RETURN $ra
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Procedure calls

Goal
Re-use blocks of code

Instruction set
ADD(I), SUB(I), AND(I), COPY, LOADI, BRA, BZ, BEQ,
LW, SW, CALL, RETURN

Example program
LOADI $arg1, 1

LOADI $arg2, 2

LOADI $arg3, 3

CALL $ra, Add3

#--------------- Add3 procedure -----------------

Add3:

ADD $val1, $arg1, $arg2

ADD $val1, $val1, $arg3

RETURN $ra
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Implementing procedure calls

Do we CALL/RETURN?
Store PC+1 in register (for CALL)
Load PC from register (for RETURN)
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Summary

I We allow store and load of PC

I Increment to return to instruction after call

I Contract (calling convention) between caller and callee
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(Trick) questions

I How can we compute the PC at a given instruction?

I Can we implement a dispatch table? (function pointer)

I Can a procedure call another procedure?

I What about recursion?
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Conclusion

I We built a general purpose processor

I In incremental steps
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Advanced tricks

I Asynchronous design
No clock

I Caching
Fast small memory on top of slow big memory

I Register stacks
Accelerated procedure calls

I Floating point arithmetic, multimedia, encryption
Upgrade the ALU

I Very large instruction word (VLIW)
Multiple independent ALUs

I Pipelining
Execute multiple (sub-)instructions simultaneously

I Multi-core/processor
Multiple processors attached to a single main memory


	Introduction
	Calculator
	Immediates
	Jumps
	Data memory
	Procedure calls
	Conclusion
	Advanced tricks

