
Computer architecture
The simplest processor

Wouter M. Koolen

Advanced Topics
23-2-12

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

About me

I Work in machine learning ...

I .. but generally interested in most of computer science

I Fervent programmer

I Computer architecture as a hobby

I Author of SIM-PL simulator for digital hardware

http://www.science.uva.nl/amstel/SIM-PL

http://www.science.uva.nl/amstel/SIM-PL

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Source material

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

What do I expect of you / What would really help

You ...

I want to learn

I have seen a digital circuit (e.g. gate, adder, flip-flop).

I wrote a program (e.g. if, goto, increment)

I are not mortally afraid of bits and hexadecimal

I ...

I will provide trick questions to guide your thinking

And most importantly ...

You raise your hand when you get lost

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

What do I expect of you / What would really help

You ...

I want to learn

I have seen a digital circuit (e.g. gate, adder, flip-flop).

I wrote a program (e.g. if, goto, increment)

I are not mortally afraid of bits and hexadecimal

I ...

I will provide trick questions to guide your thinking

And most importantly ...

You raise your hand when you get lost

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

What do I expect of you / What would really help

You ...

I want to learn

I have seen a digital circuit (e.g. gate, adder, flip-flop).

I wrote a program (e.g. if, goto, increment)

I are not mortally afraid of bits and hexadecimal

I ...

I will provide trick questions to guide your thinking

And most importantly ...

You raise your hand when you get lost

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Goal of this lecture

I present the simplest processor

Understanding
I hardware design

I You can do it too
I Baseline for more complex designs
I Many (esoteric) designs found niches

I execution of software
I Programming (e.g. embedded devices)
I Compiler architecture
I The why of hardware eccentricities

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Goal of this lecture
Pierce layers of abstraction

Transistor

Gate

Boolean circuit

Arithmetic circuit

Stateful circuit

Memory

Calculator

Processor

Assembly language

C

Assembler

Compiler

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Calculator

Goal

I 16 variables (memory cells)

I program (list of instructions)

I 4 operations

Instruction set
ADD, SUB, AND, COPY

Example program
0: ADD $6, $3, $4 Set Reg6 to Reg3 + Reg4
1: SUB $7, $3, $4 Set Reg7 to Reg3 − Reg4
2: COPY $8, $6 Set Reg8 to Reg6

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Calculator

Goal

I 16 variables (memory cells)

I program (list of instructions)

I 4 operations

Instruction set
ADD, SUB, AND, COPY

Example program
0: ADD $6, $3, $4 Set Reg6 to Reg3 + Reg4
1: SUB $7, $3, $4 Set Reg7 to Reg3 − Reg4
2: COPY $8, $6 Set Reg8 to Reg6

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Calculator

Goal

I 16 variables (memory cells)

I program (list of instructions)

I 4 operations

Instruction set
ADD, SUB, AND, COPY

Example program
0: ADD $6, $3, $4 Set Reg6 to Reg3 + Reg4
1: SUB $7, $3, $4 Set Reg7 to Reg3 − Reg4
2: COPY $8, $6 Set Reg8 to Reg6

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Implementation: the hardware circuit

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

The driving force

Purpose: Synchronise operation of components

I Usually some kind of oscillating crystal

I Clock

I High and low levels

I Positive (up) edge and negative (down) edge

I A clock cycle is: up – high – down – low

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Program counter

Purpose: maintain the current position in the program

I One address

I Increment triggered by positive clock edge

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Instruction memory

Purpose: store the program

I 16 bit address

I 14 bit data

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Registers
Purpose: maintain the state of program variables

I 16 registers named $0, $1, ..., $15
I 16 bits each
I Two read ports
I One write port (triggered by negative clock edge)

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Arithmetic logic unit (ALU)

Purpose: performs computation

S0 S1 output

0 0 A + B
0 1 A− B
1 0 A & B
1 1 B

I 2 bits to select operation

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Calculator: the circuit

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

In action

Say $3 initially contains 7, while $4 contains 5.

0: ADD $6, $3, $4 Set Reg6 to Reg3 + Reg4
1: SUB $7, $3, $4 Set Reg7 to Reg3 - Reg4
2: COPY $8, $6 Set Reg8 to Reg6

FFFF

FFFF

FFFF

FFFF

F

F

F

FFFF 3FFF

1

1

1

1

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

In action

Say $3 initially contains 7, while $4 contains 5.

0: ADD $6, $3, $4 Set Reg6 to Reg3 + Reg4
1: SUB $7, $3, $4 Set Reg7 to Reg3 - Reg4
2: COPY $8, $6 Set Reg8 to Reg6

000C

000C

0007

0005

3

4

6

0000 0346

0

0

0

0

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

In action

Say $3 initially contains 7, while $4 contains 5.

0: ADD $6, $3, $4 Set Reg6 to Reg3 + Reg4
1: SUB $7, $3, $4 Set Reg7 to Reg3 - Reg4
2: COPY $8, $6 Set Reg8 to Reg6

0002

0002

0007

0005

3

4

7

0001 1347

0

0

1

1

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

In action

Say $3 initially contains 7, while $4 contains 5.

0: ADD $6, $3, $4 Set Reg6 to Reg3 + Reg4
1: SUB $7, $3, $4 Set Reg7 to Reg3 - Reg4
2: COPY $8, $6 Set Reg8 to Reg6

000C

000C

FFFF

000C

0

6

8

0002 3068

1

1

1

1

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Summary

Calculator

I 16 memory cells

I 4 operations

I Executes program (list of instructions) sequentially

I Timing

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

(Trick) questions

I Why does an instruction take 14 bits of memory?

I Is COPY $1, $1 safe?

I What about ADD $1, $1, $1?

I Can we increment a register? How?

I Can we multiply 2 registers? How?

I Can we execute an if statement? How?

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Immediates

Goal
Use of immediates (constants) in instructions

Instruction set
ADD, SUB, AND, COPY, ADDI, SUBI, ANDI, LOADI

Example program
0: LOADI $1, 0x3000 Load 3000hex in Reg1
1: LOADI $2, 0x2000 Load 2000hex in Reg2
2: SUB $3, $1, $2 Set Reg3 to Reg1 - Reg2
3: ADDI $4, $3, 0x200 Set Reg4 to Reg3 + 0200hex

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Immediates

Goal
Use of immediates (constants) in instructions

Instruction set
ADD, SUB, AND, COPY, ADDI, SUBI, ANDI, LOADI

Example program
0: LOADI $1, 0x3000 Load 3000hex in Reg1
1: LOADI $2, 0x2000 Load 2000hex in Reg2
2: SUB $3, $1, $2 Set Reg3 to Reg1 - Reg2
3: ADDI $4, $3, 0x200 Set Reg4 to Reg3 + 0200hex

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Immediates

Goal
Use of immediates (constants) in instructions

Instruction set
ADD, SUB, AND, COPY, ADDI, SUBI, ANDI, LOADI

Example program
0: LOADI $1, 0x3000 Load 3000hex in Reg1
1: LOADI $2, 0x2000 Load 2000hex in Reg2
2: SUB $3, $1, $2 Set Reg3 to Reg1 - Reg2
3: ADDI $4, $3, 0x200 Set Reg4 to Reg3 + 0200hex

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Implementing immediates

Do we use an immediate?
Immediate value

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Multiplexer

Purpose: channel chooser

S output

0 A
1 B

I 1 bit to select which input is passed on

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Immediates in action

0: LOADI $1, 0x3000 Load 3000hex in Reg1
1: LOADI $2, 0x2000 Load 2000hex in Reg2
2: SUB $3, $1, $2 Set Reg3 to Reg1 - Reg2
3: ADDI $4, $3, 0x200 Set Reg4 to Reg3 + 0200hex

0

FFFF

FFFF

F

F

F

FFFF 7FFFFFFF

FFFF
FFFF

FFFF

FFFF

FFFF

1

1

3

3

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Immediates in action

0: LOADI $1, 0x3000 Load 3000hex in Reg1
1: LOADI $2, 0x2000 Load 2000hex in Reg2
2: SUB $3, $1, $2 Set Reg3 to Reg1 - Reg2
3: ADDI $4, $3, 0x200 Set Reg4 to Reg3 + 0200hex

0

3000

3000

0

0

1

0000 30013000

FFFF
3000

FFFF

3000

3000

0

0

3

3

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Immediates in action

0: LOADI $1, 0x3000 Load 3000hex in Reg1
1: LOADI $2, 0x2000 Load 2000hex in Reg2
2: SUB $3, $1, $2 Set Reg3 to Reg1 - Reg2
3: ADDI $4, $3, 0x200 Set Reg4 to Reg3 + 0200hex

0

2000

2000

0

0

2

0001 30022000

FFFF
2000

FFFF

2000

2000

0

0

3

3

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Immediates in action

0: LOADI $1, 0x3000 Load 3000hex in Reg1
1: LOADI $2, 0x2000 Load 2000hex in Reg2
2: SUB $3, $1, $2 Set Reg3 to Reg1 - Reg2
3: ADDI $4, $3, 0x200 Set Reg4 to Reg3 + 0200hex

0

1000

1000

1

2

3

0002 51230000

2000
2000

3000

0000

0000

1

1

1

1

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Immediates in action

0: LOADI $1, 0x3000 Load 3000hex in Reg1
1: LOADI $2, 0x2000 Load 2000hex in Reg2
2: SUB $3, $1, $2 Set Reg3 to Reg1 - Reg2
3: ADDI $4, $3, 0x200 Set Reg4 to Reg3 + 0200hex

0

1200

1200

3

0

4

0003 03040200

FFFF
0200

1000

0200

0200

0

0

0

0

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Summary

I A little more hardware ...

I ... to allow immediates as last argument

I Immediates part of instruction

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

(Trick) questions

I How many bits do we need for each instruction?

I Can we increment a register? How?

I Can we execute ADDII $1, 0x1, 0x2? How?

I Can we multiply 2 registers? How?

I Can we execute an if statement? How?

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Conditional execution and jumps

Goal
Implement if/else, switch, for, while, goto ...

Instruction set
ADD(I), SUB(I), AND(I), COPY, LOADI, BRA, BZ, BEQ

Example program
LOADI a, 8 # a = 8;

LOADI b, 4 # b = 4;

LOADI r, 0 # r = 0;

loop:

BZ b, end # while (b != 0) {

ADD r, r, a # r += a;

SUBI b, b, 1 # --b;

BRA loop # }

end:

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Conditional execution and jumps

Goal
Implement if/else, switch, for, while, goto ...

Instruction set
ADD(I), SUB(I), AND(I), COPY, LOADI, BRA, BZ, BEQ

Example program
LOADI a, 8 # a = 8;

LOADI b, 4 # b = 4;

LOADI r, 0 # r = 0;

loop:

BZ b, end # while (b != 0) {

ADD r, r, a # r += a;

SUBI b, b, 1 # --b;

BRA loop # }

end:

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Conditional execution and jumps

Goal
Implement if/else, switch, for, while, goto ...

Instruction set
ADD(I), SUB(I), AND(I), COPY, LOADI, BRA, BZ, BEQ

Example program
LOADI a, 8 # a = 8;

LOADI b, 4 # b = 4;

LOADI r, 0 # r = 0;

loop:

BZ b, end # while (b != 0) {

ADD r, r, a # r += a;

SUBI b, b, 1 # --b;

BRA loop # }

end:

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Implementing jumps

Do we jump?
Where do we jump to?
Do we write to register?

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Arithmetic logic unit (ALU)

Purpose: performs computation and tests

S0 S1 output

0 0 A + B
0 1 A− B
1 0 A & B
1 1 B

I 2 bits to select operation

I Zero bit is set when output is zero

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Summary

I A bunch more hardware
I Hardware executes a branch when

I Instruction is a branch instruction
I Test succeeds (ALU outputs zero)

I Target of jump is encoded in instruction

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

(Trick) questions

I How many bits do we need for each instruction?

I How can we test for (with A and B registers)

A = 0 A = 1 A = B A 6= B A < B

I Can we multiply 2 registers? How?

I Can we execute an if statement? How?

I Can we execute an if/else statement? How?

I Is Branch the negation of RegWrite?

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

More/main memory

Goal
Add memory. We add 216 = 65536 variables

Instruction set
ADD(I), SUB(I), AND(I), COPY, LOADI, BRA, BZ, BEQ,
LW, SW

Example program
LW $1, 10, $6 # Load mem[Reg6 + 10] into Reg1

SW $2, 10, $6 # Store $2 into mem[Reg6 + 10]

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

More/main memory

Goal
Add memory. We add 216 = 65536 variables

Instruction set
ADD(I), SUB(I), AND(I), COPY, LOADI, BRA, BZ, BEQ,
LW, SW

Example program
LW $1, 10, $6 # Load mem[Reg6 + 10] into Reg1

SW $2, 10, $6 # Store $2 into mem[Reg6 + 10]

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

More/main memory

Goal
Add memory. We add 216 = 65536 variables

Instruction set
ADD(I), SUB(I), AND(I), COPY, LOADI, BRA, BZ, BEQ,
LW, SW

Example program
LW $1, 10, $6 # Load mem[Reg6 + 10] into Reg1

SW $2, 10, $6 # Store $2 into mem[Reg6 + 10]

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Implementing main memory

Do we read from/write to memory?
Write what where? Value read?

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Summary

I We simply “bolted on” some memory

I Both in hardware

I And in software

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

(Trick) questions

I How many bits do we need for each instruction?

I Why not simply increase the number of registers?

I Can we perform a computation (say A + B) and write
the result to memory using a single instruction?

I Can we execute an if statement? How?

I What if we want more than 216 = 65536 variables?

I Can a program modify itself? (polymorphic code)

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Procedure calls

Goal
Re-use blocks of code

Instruction set
ADD(I), SUB(I), AND(I), COPY, LOADI, BRA, BZ, BEQ,
LW, SW, CALL, RETURN

Example program
LOADI $arg1, 1

LOADI $arg2, 2

LOADI $arg3, 3

CALL $ra, Add3

#--------------- Add3 procedure -----------------

Add3:

ADD $val1, $arg1, $arg2

ADD $val1, $val1, $arg3

RETURN $ra

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Procedure calls

Goal
Re-use blocks of code

Instruction set
ADD(I), SUB(I), AND(I), COPY, LOADI, BRA, BZ, BEQ,
LW, SW, CALL, RETURN

Example program
LOADI $arg1, 1

LOADI $arg2, 2

LOADI $arg3, 3

CALL $ra, Add3

#--------------- Add3 procedure -----------------

Add3:

ADD $val1, $arg1, $arg2

ADD $val1, $val1, $arg3

RETURN $ra

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Implementing procedure calls

Do we CALL/RETURN?
Store PC+1 in register (for CALL)
Load PC from register (for RETURN)

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Summary

I We allow store and load of PC

I Increment to return to instruction after call

I Contract (calling convention) between caller and callee

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

(Trick) questions

I How can we compute the PC at a given instruction?

I Can we implement a dispatch table? (function pointer)

I Can a procedure call another procedure?

I What about recursion?

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Conclusion

I We built a general purpose processor

I In incremental steps

Simple Processor

Koolen

Introduction

Calculator

Immediates

Jumps

Data memory

Procedure calls

Conclusion

Advanced tricks

Advanced tricks

I Asynchronous design
No clock

I Caching
Fast small memory on top of slow big memory

I Register stacks
Accelerated procedure calls

I Floating point arithmetic, multimedia, encryption
Upgrade the ALU

I Very large instruction word (VLIW)
Multiple independent ALUs

I Pipelining
Execute multiple (sub-)instructions simultaneously

I Multi-core/processor
Multiple processors attached to a single main memory

	Introduction
	Calculator
	Immediates
	Jumps
	Data memory
	Procedure calls
	Conclusion
	Advanced tricks

