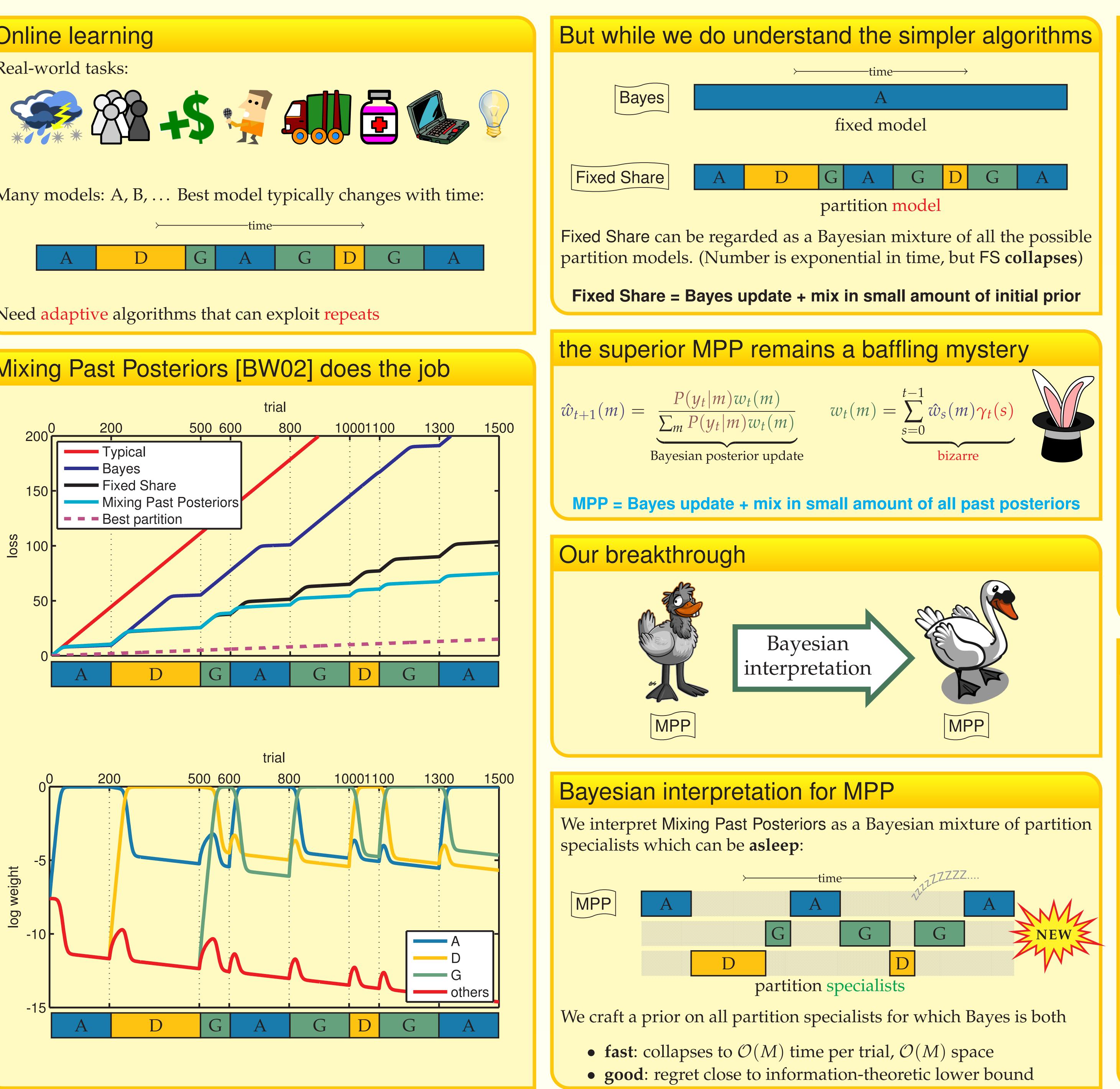
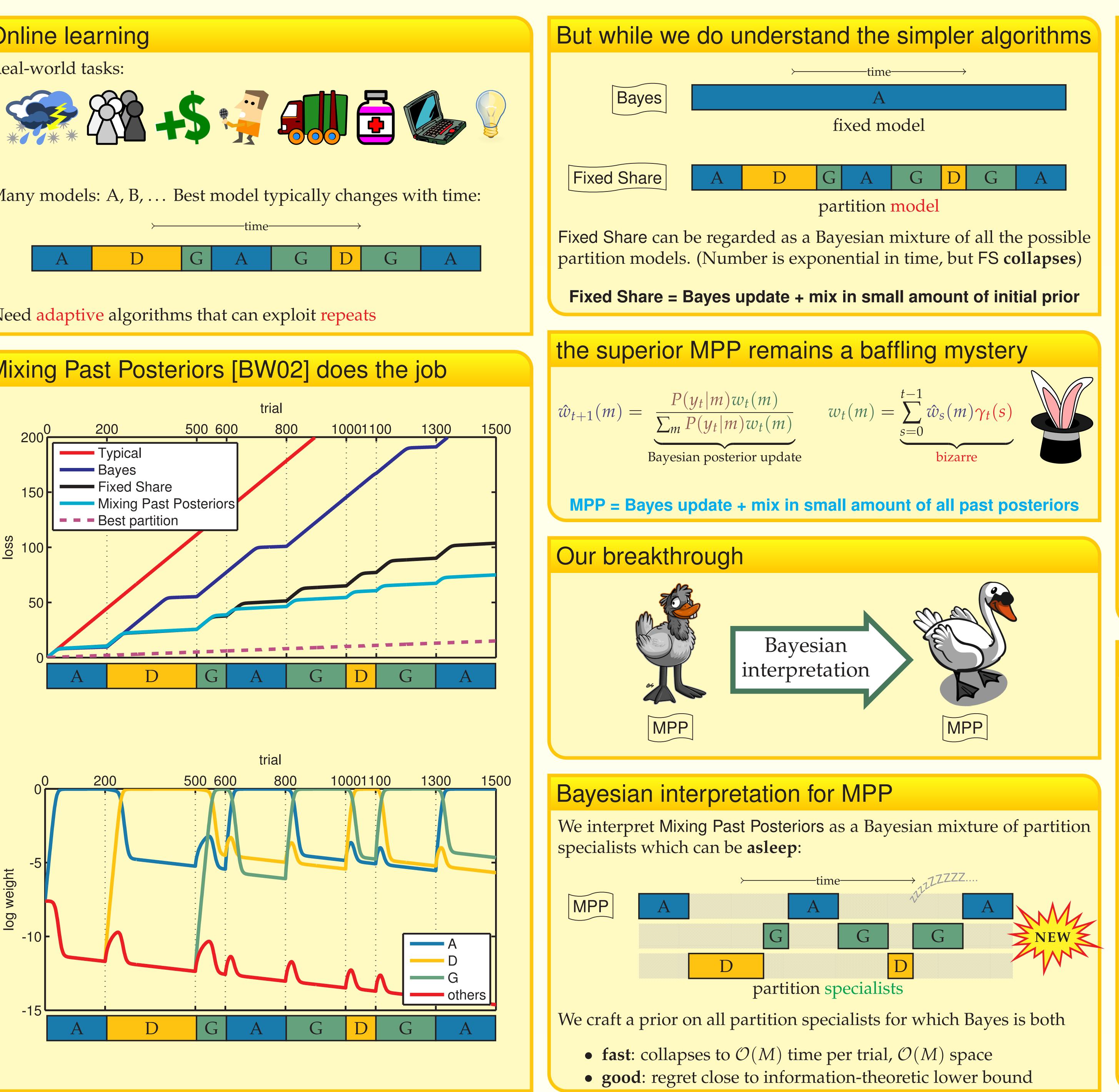


	>	≻time>					
Α	D	G	Α	G	D	G	





Putting Bayes to sleep Wouter M. Koolen, Dmitri Adamskiy and Manfred K. Warmuth

Royal Holloway University of London

Bayes for specialists crash course

A **specialist** may or **may not** issue a prediction [FSSW97]. Prediction P(y|m) only available for **awake** $m \in W$.

Key insight: complete specialists to full models [CV09]:

$$P(y|m) := P(y)$$

With prior P(m) on specialists, the Bayesian predictive distribution

$$P(y) = \sum_{m \in W} P(y)$$

has solution

$$P(y) = \frac{\sum_{m \in W}}{\sum_{m}}$$

The **posterior distribution** is incrementally updated by

$$P(m|y) = \begin{cases} \frac{P}{P} \\ \frac{P}{P} \end{cases}$$

Bayes is **fast**: predict in O(M) time per round. Bayes is **good**: regret w.r.t. specialist *m* on data $y_{<T}$ bounded by

$$\sum_{\leq T: m \in W_t} (-\ln P(y_t | y_{< t}) +$$

Conclusion

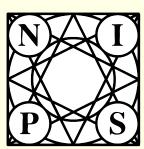
Proper Bayesian interpretation of Mixing Past Posteriors using "prediction with specialists"

- Simplified tuning
- Fastest algorithm
- Sharpest bounds
- Mysterious factor 2 in bound explained

Application of specialists technology to multitask learning

- significantly improved bounds
- intriguing collapsed algorithm

all grandiose details are in the paper



Poster Tu57 December 4th 2012

for all asleep $m \notin W$.

 $P(y|m)P(m) + \sum P(y)P(m)$

P(y|m)P(m) $n \in W P(m)$

P(y|m)P(m)if $m \in W$, P(y) $\frac{P(y)P(m)}{P(y)} = P(m)$ if $m \notin W$.

 $+\ln P(y_t|y_{< t},m)) \leq -\ln P(m).$

