RANDOM PERMUTATION ONLINE

WOJCIECH KOTEOWSKI

MOTIVATION

? distant goal: online
1sotonic regression on
partial orders

Current solution
for linear orders does
not scale

« New model and algo-
rithms for linear case

(OFFLINE) ISOTONIC REGRESSION

Fit an isotonic (non-decreasing)
function to the data

= argmin g
‘totomc f 1

isotonic regression function
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Pool Adjacent Violators Algorithm (PAVA) [Ayer et al., 1955]:

o [teratively merge data into blocks until no violator of isotonic
constraints exists

e Assign to data in each block the average of their labels y;

e Blocks correspond to level sets of f*

ONLINE ISOTONIC REGRESSION

Attrialt =1...T"
Adversary chooses covariate x;
Learner predicts y, € [0, 1]
Adversary reveals label y, € [0, 1]
Learner suffers squared loss (y, — 7/,)*

T
o Regret: Zle(yt —4)? — min (Y,

isotonic f

— f(x4))?

total loss of offline IR function

e Linear regret without restriction on x;
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RANDOM PERMUTATION MODEL

Random Permutation Model

e Adversary chooses data instances z; < ... <z, y1, . ..

e Sample UAR a permutation 0 = (01,...,070)of {1,...,T
e Round ¢: covariate z,,,, true label y,,, and loss (¥, — ¥, )*

Learner minimizes expected reqret,
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where 1 := E; (Yo, — Uo,)? — Lj + Li_,| is the per-round regret and
L; = L*{(%6y,Yo,)s -5 (0, Yo, ) }) is the optimal loss of the first ¢
labeled instances.
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LEAVE-ONE-OUT LOSS

With Data D = {(z1,v1),. -, (z¢,y¢)}, the Loo of a t round game is

looi (D) :

re(D) D _
, (xt, yt) -

Lemma 1.
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LOWER BOUND

Adversarial lower bound [Kotlowski, Koolen, and Malek, 2016] ap-
plies to random permutation model: foo; = Q(t2/3).

MATCHING BOUNDS

Theorem 2. There is an algorithm for the random-permutation model with

excess leave-one-out loss Looy = O(t~3) and hence expected regret Ry <
>, O(t=3) = O(T'3), which matches the lower bound of foo; = Q (t=2/3).

Caveat: algorithm is not efficient (on partial orders)!

FORWARD ALGORITHMS

Two observations:

o PAVA is efficient and generalizes to partial orders
o Follow The Leader algorithms are common in practice

Forward Algorithm: To predict at x;, imagine y; €
on {(1,y1) - (@—1,y—1)} U{(zt,y;)}, and play y,

0, 1], compute f*
= [ (@)
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FORWARD ALGORITHM EXAMPLES

o IR-Int: Compute f* on past data. Predict with average of f* at
nearest x;.

o Interpolation Ui = Ny + (1 — X))y
(where 3" and ' are ,plug-in y; = 0” and ,,plug-in y;, = 1”)

e Last step minimax:

S

yY; = argmin max
y€l0,1] vi€(0,1]

— L*(y)}

1T —vi)

o VAP predictors [Vovk et al., 2015]:

~log __

REGRET BOUNDS

logt
r :

— Q(t~2) when run on

Theorem 3. Any forward algorithm has loo, = O(

Lemma 4. The IR-Int algorithm has {oo,
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Parameters: Weight ¢ > 0 and label v € |0, 1].
Algorithm: To predict at z;

e Compute isotonic regression f’ on weighted dataset

D" = {(zs,ys, 1)1 < s <t} U{(24,7.0)}

= ['(@)
Efficient weighted algorithms available [Kyng et al., 2015].

e Predict y;

TUNING HEAVY-y

Any fixed label v works. We like v = 1.
(Not all adaptive labels work. Fixed point + lower bound.)

Theorem 5. Heavy-v has sub-optimal Coo, loss unless ¢ = ©(t3).

~

O(t3).

Conjecture 6. Heavy-v with weight ¢ = ©(t3) has foo; =




