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MOTIVATION

? distant goal: online
isotonic regression on
partial orders

. . . Current solution
for linear orders does
not scale

! New model and algo-
rithms for linear case

(OFFLINE) ISOTONIC REGRESSION

Fit an isotonic (non-decreasing)
function to the data:

f∗ = argmin
isotonic f

T∑
t=1

(y
t
− f(xt))

2

isotonic regression function
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Pool Adjacent Violators Algorithm (PAVA) [Ayer et al., 1955]:

• Iteratively merge data into blocks until no violator of isotonic
constraints exists

• Assign to data in each block the average of their labels yt
• Blocks correspond to level sets of f∗

ONLINE ISOTONIC REGRESSION

At trial t = 1 . . . T :
Adversary chooses covariate xt
Learner predicts ŷ

t
∈ [0, 1]

Adversary reveals label y
t
∈ [0, 1]

Learner suffers squared loss (yt − ŷt)
2

• Regret:
∑T
t=1(yt − ŷt)2 − min

isotonic f

T∑
t=1

(yt − f(xt))
2

︸ ︷︷ ︸
total loss of offline IR function

• Linear regret without restriction on xt

RANDOM PERMUTATION MODEL
Random Permutation Model

• Adversary chooses data instances x1 < . . . < xT , y1, . . . , yT

• Sample UAR a permutation σ = (σ1, . . . , σT ) of {1, . . . , T}

• Round t: covariate xσt , true label yσt , and loss (ŷσt − yσt)
2

Learner minimizes expected regret,

RT := Eσ

[
T∑
t=1

(yσt − ŷσt)
2

]
− L∗T =

T∑
t=1

rt,

where rt := Eσ
[
(yσt
− ŷσt

)2 − L∗t + L∗t−1
]

is the per-round regret and
L∗t = L∗({(xσ1

, yσ1
), . . . , (xσt

, yσt
)}) is the optimal loss of the first t

labeled instances.

LEAVE-ONE-OUT LOSS
With Data D = {(x1, y1), . . . , (xt, yt)}, the `oo of a t round game is

`oot(D) :=
1

t

(( t∑
i=1

(
yi − ŷi(D \ (xi, yi))

)2)− L∗(D)

)
.

Lemma 1. rt(D) ≤ `oot(D) for any t and any data set D =
{(x1, y1), . . . , (xt, yt)}.

LOWER BOUND
Adversarial lower bound [Kotłowski, Koolen, and Malek, 2016] ap-
plies to random permutation model: `oot = Ω(t−2/3).

MATCHING BOUNDS
Theorem 2. There is an algorithm for the random-permutation model with
excess leave-one-out loss `oot = Õ(t−

2
3 ) and hence expected regret RT ≤∑

t Õ(t−
2
3 ) = Õ(T

1
3 ), which matches the lower bound of `oot = Ω

(
t−2/3

)
.

Caveat: algorithm is not efficient (on partial orders)!

FORWARD ALGORITHMS
Two observations:

• PAVA is efficient and generalizes to partial orders
• Follow The Leader algorithms are common in practice

Forward Algorithm: To predict at xt, imagine y′t ∈ [0, 1], compute f∗

on {(x1, y1) . . . (xt−1, yt−1)} ∪ {(xt, y′t)}, and play ŷt = f∗(xt).

FORWARD ALGORITHM EXAMPLES
• IR-Int: Compute f∗ on past data. Predict with average of f∗ at

nearest xi.

• Interpolation ŷi = λiŷ
0
i + (1− λi)ŷ1i

(where ŷ0 and ŷ1 are „plug-in y′t = 0” and „plug-in y′t = 1”)

• Last step minimax:

ŷi = argmin
ŷ∈[0,1]

max
yi∈[0,1]

{
(ŷ − yi)2 − L∗(y)

}
• IVAP predictors [Vovk et al., 2015]:

ŷlogi =
ŷ1i

ŷ1i + 1− ŷ0i
, ŷBrier

i =
1 + (ŷ0i )2 − (1− ŷ1i )2

2

REGRET BOUNDS

Theorem 3. Any forward algorithm has `oot = O
(√

log t
t

)
.

Lemma 4. The IR-Int algorithm has `oot = Ω(t−
1
2 ) when run on

10000︸ ︷︷ ︸
1/5

11000︸ ︷︷ ︸
2/5

11100︸ ︷︷ ︸
3/5

11110︸ ︷︷ ︸
4/5

11111︸ ︷︷ ︸
5/5

.
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 10Parameters: Weight c > 0 and label γ ∈ [0, 1].

Algorithm: To predict at xt

• Compute isotonic regression f ′ on weighted dataset

D′ :=
{

(xs, ys, 1)
∣∣1 ≤ s < t

}
∪
{

(xt, γ, c)
}

• Predict yt = f ′(xt)

Efficient weighted algorithms available [Kyng et al., 2015].

TUNING HEAVY-γ
Any fixed label γ works. We like γ = 1.
(Not all adaptive labels work. Fixed point + lower bound.)

Theorem 5. Heavy-γ has sub-optimal `oot loss unless c = Θ(t
1
3 ).

Conjecture 6. Heavy-γ with weight c = Θ(t
1
3 ) has `oot = Õ(t−

2
3 ).


