





while not BAIStop ({ $s \in C(s_0)$ }) do $R_t = \text{BAIStep}\left(\{s \in \mathcal{C}(s_0)\}\right)$ Sample the representative leaf $L_t = \ell_{R_t}(t)$ Update conf. intervals and representative leaves; t = t + 1.

Based on the UGapE algorithm [Gabillon et al., 2012] • Sample: the least sampled among two promising nodes: $\underline{a}_t = \operatorname{argmin} B_a(t)$ and $\underline{b}_t = \operatorname{argmax} UCB_b(t)$, where $B_s(t) = \max_{s' \in \mathcal{C}(s_0) \setminus \{s\}} UCB_{s'}(t) - LCB_s(t)$. • Stop : at time $\tau = \inf \{ t \in \mathbb{N} : UCB_{b_t}(t) - LCB_{a_t}(t) < \epsilon \}$ <u>Alternative</u>: LUCB-MCTS, see [Kalyanakrishnan et al., 2012] **Theoretical Results** $\hat{\mu}_{\ell}(t) \pm \sqrt{\frac{\beta(N_{\ell}(t),\delta)}{2N_{\ell}(t)}}$

UGapE-MCTS is (ϵ, δ) -PAC for confidence intervals of the form where $\beta(s,\delta) = \log(|\mathcal{L}|/\delta) + 3\log\log(|\mathcal{L}|/\delta) + (3/2)\log(\log s + 1).$ Sample complexity: $\tau = O\left(\sum_{\ell \in \mathcal{L}} \frac{1}{\Delta_{\ell}^2 \vee \Delta_*^2 \vee \epsilon^2} \log\left(\frac{1}{\delta}\right)\right)$ w.p. $\geq 1 - \delta$, $\Delta_* := V(s^*) - V(s_2^*),$ $\Delta_\ell := \max_{s \in \texttt{Ancestors}(\ell) \setminus \{s_0\}}$ $\left|V_{\texttt{Parent}(s)} - V_{s}\right|$

entrum Wiskunde & Informatica

BAI-MCTS Architecture

CWI

UGapE-MCTS

 $b \in \mathcal{C}(s_0) \setminus \{\underline{a}_t\}$