
Monte-Carlo Tree Search by Best Arm IdentificationMonte-Carlo Tree Search by Best Arm Identification
Emilie Kaufmann Wouter M. KoolenEmilie Kaufmann Wouter M. Koolen

Monte Carlo Tree Search Successful . . .

source: Wikipedia

. . . But Theory Missing!
We introduce an idealized model:

• fixed maximin tree

• i.i.d. playouts starting from each leaf

and propose new algorithms with sample complexity guarantees
based on Best Arm Identification methods.

Stylised Model

μ1 μ2 μ3 μ4 μ5 μ6 μ7 μ8

s0

A fixed MAXMIN game tree T , with leaves L.

MAX node (= your move)

MIN node (= adversary move)

Leaf `: stochastic oracle O` that evaluates the position

Learning Protocol
At round t a MCTS algorithm:

• picks a path down to a leaf Lt

• get an evaluation of this leaf Xt ∼ OLt

Assumption: i.i.d. sucessive evaluations, EX∼O`
[X] = µ`

Goal
A MCTS algorithm should find the best move at the root:

Vs =

µs if s ∈ L,

maxc∈C(s) Vc if s is a MAX node,
minc∈C(s) Vc if s is a MIN node.

s∗ = argmax
s∈C(s0)

Vs

A PAC learning framework
MCTS algorithm: (Lt, τ, ŝτ), where

• Lt is the sampling rule

• τ is the stopping rule

• ŝτ ∈ C(s0) is the recommendation rule

is (ε, δ)− PAC if P (Vŝτ ≥ Vs∗ − ε) ≥ 1− δ.

Goal: (ε, δ)-PAC algorithm with a small sample complexity τ.

Numerical Results

LUCB-MCTS

UGapE-MCTS

FindTopWinner

0.86

0.86 0.76 0.68

409

336

3092

0.86 0.87 0.99

0.86 0.53 0.32

7

7

187

3

3

89

0.87 0.53 0.51

281

237

3092

6

6

176

6

5

161

0.99 0.79 0.26

21

20

1267

2

2

707

0

0

36

0.76 0.90 0.91

0.76 0.47 0.31

491

606

3091

12

12

286

6

6

130

0.90 0.79 0.20

30

32

1246

11

13

1199

1

1

38

0.91 0.72 0.30

25

26

827

6

7

680

1

1

52

0.68 0.80 0.91

0.68 0.63 0.61

94

113

771

40

45

768

33

37

763

0.80 0.55 0.22

47

49

771

6

6

449

2

2

65

0.91 0.57 0.16

12

12

584

1

1

169

1

1

36

Our benchmark 3-way tree of depth 3. Shown below the leaves are the numbers of pulls of 3 algorithms: LUCB-MCTS (0.72% errors, 1551
samples), UGapE-MCTS (0.75%, 1584), and FindTopWinner (0%, 20730). Numbers are averages over 10K repetitions with ε = 0 and δ = 0.1 · 27.

Confidence Intervals at Depth One
`s(t): representative leaf of internal node s ∈ T .

Children Parent

P

(⋂
t∈N

⋂
s∈T

(Vs ∈ Is(t))

)
≥ 1− δ

s0

Idea: alternate optimistic/pessimistic moves starting from s

BAI-MCTS Architecture
Input: a BAI algorithm
Initialization: t = 1.
while not BAIStop ({s ∈ C(s0)}) do

Rt = BAIStep ({s ∈ C(s0)})
Sample the representative leaf Lt = `Rt(t)
Update conf. intervals and representative leaves; t = t + 1.

end
Output: BAIReco ({s ∈ C(s0)})

UGapE-MCTS
Based on the UGapE algorithm [Gabillon et al., 2012]

• Sample: the least sampled among two promising nodes:

at = argmin
a∈C(s0)

Ba(t) and bt = argmax
b∈C(s0)\{at}

UCBb(t),

where Bs(t) = maxs′∈C(s0)\{s}UCBs′(t)− LCBs(t).
• Stop : at time τ = inf

{
t ∈N : UCBbt

(t)− LCBat(t) < ε
}

• Recommend: ŝτ = aτ

Alternative: LUCB-MCTS, see [Kalyanakrishnan et al., 2012]

Theoretical Results
UGapE-MCTS is (ε, δ)-PAC for confidence intervals of the form

µ̂`(t)±
√

β(N`(t),δ)
2N`(t)

where β(s, δ) = log(|L|/δ) + 3 log log(|L|/δ) + (3/2) log(log s + 1).

Sample complexity: τ = O
(

∑`∈L
1

∆2
`∨∆2∗∨ε2 log

(
1
δ

))
w.p. ≥ 1− δ,

where
∆∗ := V(s∗)−V(s∗2),

∆` := max
s∈Ancestors(`)\{s0}

∣∣∣VParent(s) −Vs

∣∣∣ .

