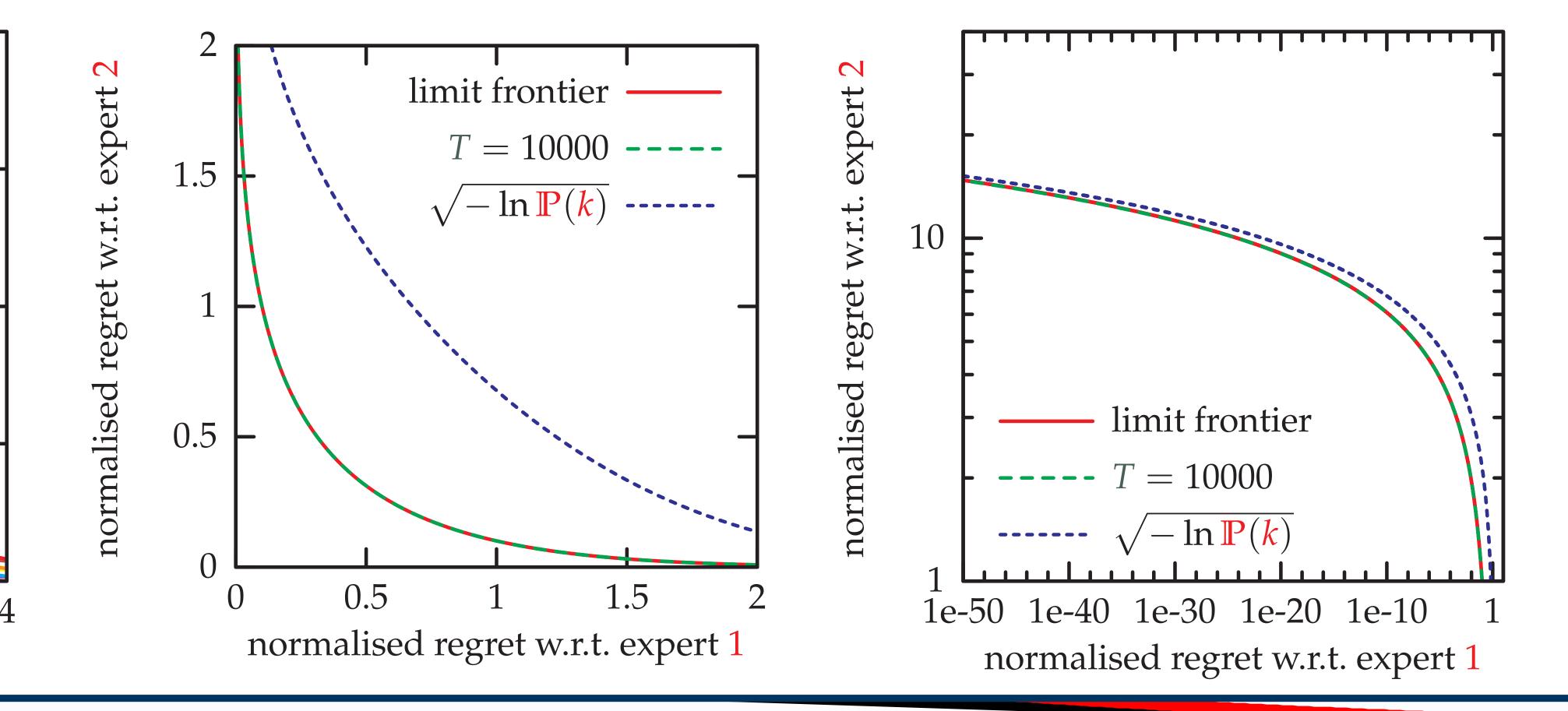


The Pareto Regret Frontier

Wouter M. Koolen

Queensland University of Technology

horizons (left). Asymptotic (middle & right)



Normalised large horizon behaviour

limit frontier := $\lim_{T \to \infty} \frac{\text{frontier}_T}{\sqrt{T}}$

CWI

The limit frontier is the smooth curve

$$\langle f(-u), f(+u) \rangle \quad u \in \mathbb{I}$$

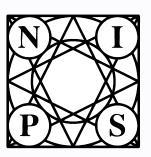
Unfairness is a key resou

Regret $\sqrt{T(-\ln \mathbb{P}(k))}$ is real: for any prior \mathbb{P} on $K = 2 \exp(\frac{1}{2})$... but fundamentally subop

 $\sqrt{2.6T(-\ln \mathbb{P}(k))}$ is realisab any prior \mathbb{P} on K > 2 experts (by biased one-vs-all chain)

Thank you

Centrum Wiskunde & Informatica



Asymptotic characterisation (K = 2 experts)

 \mathbb{R} , where $f(u) := u\Phi(u) + \frac{e^{-\frac{u}{2}}}{\sqrt{2\pi}}$

and $\Phi(u) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} e^{-\frac{x^2}{2}} dx$. The optimal strategy converges to

 $p(u) = \Phi(u)$

Conclusion

urce!	Interesting follow-ups:
lisable	• $K > 2$ experts exact frontier
perts	• Other losses
ble for s	• Luckiness stratifications, e.g. $\sqrt{L_T^k}, \sqrt{\frac{L_T^k(T-L_T^k)}{T}}, \dots$
	• Horizon-free biased rates ρ : Regret $_t^k \le \rho^k \sqrt{t}$ for all t

• Use of limit algorithm