Learning a set of directions

Wouter M. Koolen, Jiazhong Nie and Manfred K. Warmuth

Gradient descent

Mill maintains the two moments $\left\langle\mu_{t}, D_{t}\right\rangle \in \mathcal{U}$ as parameter At trial $t=1 \ldots T$, the Mill

1. Decomposes parameter $\left\langle\mu_{t}, D_{t}\right\rangle$ into a mixture of directions and draws u_{t} from mixture
2. Receives Wind direction \boldsymbol{x}_{t} and gain $\mathbb{E}\left[\left(\boldsymbol{u}_{t}^{\top} \boldsymbol{x}_{t}+c\right)^{2}\right]$
3. Updates $\left\langle\mu_{t}, D_{t}\right\rangle$ to $\left\langle\widehat{\mu}_{t+1}, \widehat{D}_{t+1}\right\rangle$ with the gradient of the expected gain on x_{t}

$$
\widehat{\mu}_{t+1}:=\mu_{t}+2 \eta c x_{t} \quad \text { and } \quad \widehat{D}_{t+1}:=D_{t}+\eta x_{t} \boldsymbol{x}_{t}^{\top}
$$

4. Projects $\left\langle\widehat{\mu}_{t+1}, \widehat{D}_{t+1}\right\rangle$ back into \mathcal{U}
$\left\langle\mu_{t+1}, D_{t+1}\right\rangle:=\operatorname{argmin}\left\|D-\widehat{D}_{t+1}\right\|_{F}^{2}+\left\|\mu-\widehat{\mu}_{t+1}\right\|^{2}$ $\operatorname{tr}(D)=1$
$D \succeq \mu \mu^{\top}$

Theorem

With proper tuning of η, the regret after T trials of GD is at most $\sqrt{3\left(4 c^{2}+1\right) T}$

- Regret grows sub-linearly with T
- Mill turned close to the best orientation
- Holland is saved ©

Conclusion

- An efficient method for orienting windmills
- Characterization of set of first two moments of distributions on directions
- Works for $n \geq 2$ dimensions
- We can learn sets of $k \geq 1$ orthogonal directions Characterisation Theorem and decomposition alg. much more tricky

Bonus plots

