Learning a set of directions

Wouter M. Koolen, Jiazhong Nie and Manfred K. Warmuth

Amsterdam 5 meters below sea level

Pump *H*₂*O* **- but where to point the Windmills?**

Online learning to help: for t = 1, 2, ...

- Mill chooses a randomized direction $u_t \sim \mathbb{P}_t$
- Wind reveals direction \boldsymbol{x}_t
- Expected gain based on match

Randomized Prediction

For $u \sim \mathbb{P}$,

$$\mathbb{E}\left[\left(\boldsymbol{u}^{\mathsf{T}}\boldsymbol{x}+\boldsymbol{c}\right)^{2}\right] = \boldsymbol{x}^{\mathsf{T}} \mathbb{E}\left[\boldsymbol{u}\boldsymbol{u}^{\mathsf{T}}\right] \boldsymbol{x} + 2\boldsymbol{c}\boldsymbol{x}^{\mathsf{T}} \mathbb{E}\left[\boldsymbol{u}\right] + \boldsymbol{c}$$
2nd moment \boldsymbol{D} 1st moment $\boldsymbol{\mu}$

Key idea: Use parameter $\langle \mu, D \rangle$

What is set \mathcal{U} of valid $\langle \mu, D \rangle$?

 $\mathcal{U} := \{ \langle \mu, D \rangle \mid \exists \mathbb{P} : \mu, D \text{ are } 1st/2nd \text{ moment of some } \mathbb{P} \}$

Characterisation Theorem Parameter $\langle \mu, D \rangle \in \mathcal{U}$ iff $\langle \mu, D \rangle$ satisfies the following **semi-definite** constraints:

$$\operatorname{tr}(\boldsymbol{D}) = 1$$
 and $\boldsymbol{D} \succeq \boldsymbol{\mu} \boldsymbol{\mu}^{\mathsf{T}}$

and any $\langle \mu, D \rangle \in \mathcal{U}$ can be efficiently decomposed into 2(n+1) "pure" directions:

$$\langle \boldsymbol{\mu}, \boldsymbol{D} \rangle = \sum_{i=1}^{2(n+1)} w_i \langle \boldsymbol{u}_i, \boldsymbol{u}_i \boldsymbol{u}_i^{\mathsf{T}} \rangle$$

Centrum Wiskunde & Informatica

CWI

COLT

Gradient descent

Mill maintains the two moments $\langle \mu_t, D_t \rangle \in \mathcal{U}$ as parameter At trial $t = 1 \dots T$, the Mill

- 1. **Decomposes** parameter $\langle \boldsymbol{\mu}_t, \boldsymbol{D}_t \rangle$ into a mixture of directions and draws u_t from mixture
- 2. Receives Wind direction x_t and gain $\mathbb{E}\left[(u_t^{\mathsf{T}} x_t + c)^2\right]$
- 3. Updates $\langle \boldsymbol{\mu}_t, \boldsymbol{D}_t \rangle$ to $\langle \widehat{\boldsymbol{\mu}}_{t+1}, \widehat{\boldsymbol{D}}_{t+1} \rangle$ with the gradient of the expected gain on \boldsymbol{x}_t

 $\widehat{\boldsymbol{\mu}}_{t+1} \coloneqq \boldsymbol{\mu}_t + 2\eta \boldsymbol{c} \boldsymbol{x}_t \text{ and } \widehat{\boldsymbol{D}}_{t+1} \coloneqq \boldsymbol{D}_t + \eta \boldsymbol{x}_t \boldsymbol{x}_t^\mathsf{T}$

4. **Projects** $\langle \widehat{\boldsymbol{\mu}}_{t+1}, \widehat{\boldsymbol{D}}_{t+1} \rangle$ back into \mathcal{U}

 $\langle \boldsymbol{\mu}_{t+1}, \boldsymbol{D}_{t+1} \rangle \coloneqq \operatorname{argmin} \|\boldsymbol{D} - \widehat{\boldsymbol{D}}_{t+1}\|_F^2 + \|\boldsymbol{\mu} - \widehat{\boldsymbol{\mu}}_{t+1}\|^2$ $\operatorname{tr}(\boldsymbol{D}) = 1$ $D \succeq \mu \mu^{\intercal}$

Theorem

With proper tuning of η , the regret after T trials of is at most $\sqrt{3(4c^2+1)T}$

- Regret grows sub-linearly with *T*
- Mill turned close to the best orientation
- Holland is saved 🙂

Conclusion

- An efficient method for orienting windmills
- Characterization of set of first two moments of distributions on directions
- Works for $n \ge 2$ dimensions
- We can learn sets of $k \ge 1$ orthogonal directions. Characterisation Theorem and decomposition alg. much more tricky

GD	

