Goal

We want to make efficient online learning algorithms that adapt automatically to the complexity of the environment.

- Worst-case rates in adversarial environments (safe and robust)
- Fast rates in favorable stochastic environments (practice)

Learning Model: Online Convex Optimization

In round $t=1,2$,

- Learner chooses $w_{t} \in \mathcal{U} \subseteq \mathbb{R}^{d}$
- Environment selects convex loss function $\ell_{t}: \mathcal{U} \rightarrow \mathbb{R}$
- Learner incurs loss $\ell_{t}\left(\boldsymbol{w}_{t}\right)$ and observes gradient $\nabla \ell_{t}\left(\boldsymbol{w}_{t}\right)$ Goal: small regret R_{T}^{u} (or upper bound \tilde{R}_{T}^{u}) w.r.t. every point u

$$
R_{T}^{u}:=\sum_{t=1}^{T}\left(\ell_{t}\left(w_{t}\right)-\ell_{t}(u)\right), \quad \tilde{R}_{T}^{u}:=\sum_{t=1}^{T}\left(w_{t}-u\right)^{\top} \nabla \ell_{t}\left(w_{t}\right) .
$$

Second-order Regret Guarantees

$$
\begin{equation*}
\tilde{R}_{T}^{f} \leq \sqrt{V_{T}^{f} K_{T}^{f}} \quad \text { for all } f \in \mathcal{F} \tag{1}
\end{equation*}
$$

Beats worst-case regret when $V_{T}^{f^{*}}=o(T)$ and $K_{T}^{f^{*}}$ small.

Two Examples

Squint

Koolen and Van Erven [2015]
Setting Hedge Setting
\mathcal{F} expert $k \in\{1,2, \ldots\}$
Loss Linear $\boldsymbol{w}_{t}^{\top} \boldsymbol{\ell}_{t}$
Cmplx. $\quad K_{T}^{k}=-\ln \pi(k)$
Variance $V_{T}^{k}=\sum_{t=1}^{T}\left(\boldsymbol{w}_{t}^{\top} \boldsymbol{\ell}_{t}-\ell_{t}^{k}\right)^{2}$
Time/rd. $O(1)$ per expert

MetaGrad
Van Erven and Koolen [2016] Online Convex Optimization $u \in \mathcal{U}$
Convex $\ell_{t}\left(w_{t}\right)$
$K_{T}^{u}=d \ln T$
$V_{T}^{u}=\sum_{t=1}^{T}\left(\left(w_{t}-u\right)^{\top} \nabla \ell_{t}\left(w_{t}\right)\right)^{2}$ $O\left(d^{2} \ln T\right)$ plus projection

First Step

Consider losses $\ell \stackrel{\text { iid }}{\sim} \mathbb{P}$ with stochastic best expert $k^{*}=\arg \min _{k} \mathbb{E}\left[\ell^{k}\right]$ and gap $\min _{k \neq k^{*}} \mathbb{E}\left[\ell^{k}-\ell^{k^{*}}\right]>0$. Then second-order bound (1) implies constant regret $\mathbb{E}\left[R_{T}^{k^{*}}\right]=O(1)$ [Gaillard et al., 2014].

Friendly Stochastic Environments

The Bernstein condition [Bartlett and Mendelson, 2006] says that variance of excess loss is small near stochastic optimum.

Bernstein condition key to fast rates in statistical learning Fix $B>0$ and $\kappa \in[0,1]$. We say

- $\ell \sim \mathbb{P}$ are (B, κ)-Bernstein for stochastic experts if

$$
\mathbb{E}\left[\left(\ell^{k}-\ell^{k^{*}}\right)^{2}\right] \leq B \mathbb{E}\left[\ell^{k}-\ell^{k^{*}}\right]^{\kappa} \quad \forall k .
$$

- $\ell \sim \mathbb{P}$ are (linearized) (B, κ)-Bernstein for stochastic OCO if

$$
\mathbb{E}\left[\left(\left(\boldsymbol{w}-u^{*}\right)^{\top} \nabla \ell(\boldsymbol{w})\right)^{2}\right] \leq B \mathbb{E}\left[\left(w-u^{*}\right)^{\top} \nabla \ell(\boldsymbol{w})\right]^{\kappa} \quad \forall w .
$$

See paper for extensions beyond iid.

Main Theorem

In any stochastic setting satisfying the (B, κ)-Bernstein condition, a secondorder regret bound (1) implies fast rates both in expectation:

$$
\mathbb{E}\left[R_{T}^{f^{*}}\right]=O\left(K_{T}^{\frac{1}{2-\kappa}} T^{\frac{1-\kappa}{2-\kappa}}\right),
$$

and with high probability: for any $\delta>0$, with probability at least $1-\delta$,

$$
R_{T}^{f^{*}}=O\left(\left(K_{T}-\ln \delta\right)^{\frac{1}{2-\kappa} T^{\frac{1}{2-\kappa}}}\right)
$$

Inspiration: Tsybakov Margin Condition

easy

Confusing case: predictors with equal risk but opposite predictions.

Hinge Loss Example

Unregularized hinge loss on unit ball.

- Data $\left(\boldsymbol{x}_{t}, y_{t}\right) \sim \mathbb{P}$ i.i.d.
- Hinge loss $\ell_{t}(\boldsymbol{u})=\max \left\{0,1-y_{t} \boldsymbol{x}_{t}^{\top} \boldsymbol{u}\right\}$.
- Mean $\boldsymbol{\mu}=\mathbb{E}[y \boldsymbol{x}]$ and second moment $\boldsymbol{D}=\mathbb{E}\left[\boldsymbol{x} \boldsymbol{x}^{\top}\right]$.
- Bernstein with $\kappa=1$ and $B=\frac{2 \lambda_{\max }(\boldsymbol{D})}{\|\boldsymbol{\mu}\|}$

Absolute Loss Example

Absolute loss:

$$
\ell_{t}(u)=\left|u-x_{t}\right|
$$

where $x_{t}= \pm \frac{1}{2}$ i.i.d. with probabilities $2 / 5$ and $3 / 5$.

Individual loss functions

Long-term average loss

Bernstein with $\kappa=1$ and $B=5$.

Proof Ideas (OCO)

In-expectation for $\kappa=1$: Consider $\ell \sim \mathbb{P}$ with stochastic optimum $u^{*}=\arg \min _{u \in \mathcal{U}} \mathbb{E}[\ell(\boldsymbol{u})]$. The second-order regret bound (1) implies

$$
\mathbb{E}\left[R_{T}^{u^{*}}\right] \leq \mathbb{E}\left[\tilde{R}_{T}^{u^{*}}\right] \leq \mathbb{E}\left[\sqrt{V_{T}^{u^{*}} K_{T}^{u^{*}}}\right] \leq \sqrt{\mathbb{E}\left[V_{T}^{u^{*}}\right] K_{T}^{u^{*}}}
$$

Let $x_{t}^{u}:=\left(u-u^{*}\right)^{\top} \nabla \ell_{t}(u)$ denote the excess linearzed loss of u in round t. The Bernstein condition for $\kappa=1$ yields

$$
\mathbb{E}\left[V_{T}^{u^{*}}\right]=\sum_{t=1}^{T} \mathbb{E}\left[\left(x_{t}^{u_{t}}\right)^{2}\right] \leq B \sum_{t=1}^{T} \mathbb{E}\left[x_{t}^{u_{t}}\right]=B \mathbb{E}\left[\tilde{R}_{T}^{u^{*}}\right]
$$

Combining the above two inequalities and solving for $\mathbb{E}\left[\tilde{R}_{T}^{u^{*}}\right]$ gives

$$
\mathbb{E}\left[R_{T}^{u^{*}}\right] \leq B K_{T}^{u^{*}}
$$

For $\kappa<1$: linearize $\left(z^{\kappa}=\kappa^{\kappa}(1-\kappa)^{1-\kappa} \inf _{\epsilon>0}\left\{\epsilon^{\kappa-1} z+\epsilon^{\kappa}\right\}\right.$ for $z \geq$ 0) to show

$$
c_{1} \cdot \epsilon^{1-\kappa} \mathbb{E}\left[V_{T}^{u^{*}}\right] \leq \mathbb{E}\left[\tilde{R}_{T}^{u^{*}}\right]+c_{2} \cdot T \cdot \epsilon .
$$

High probability: requires sophisticated martingale argument

