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Goal
We want to make efficient online learning algorithms that adapt au-
tomatically to the complexity of the environment.
• Worst-case rates in adversarial environments (safe and robust)
• Fast rates in favorable stochastic environments (practice)

Key Observation

Friendliness of
stochastic environments
commonly quantified by
condition relating
variance to
regret

Modern
adaptive

algorithms
bound regret

in terms of
variance

Fast
Rates

Learning Model: Online Convex Optimization
In round t = 1, 2, . . .
• Learner chooses wt ∈ U ⊆ Rd

• Environment selects convex loss function `t : U → R

• Learner incurs loss `t(wt) and observes gradient ∇`t(wt)

Goal: small regret RuT (or upper bound R̃uT ) w.r.t. every point u

RuT :=
T

∑
t=1

(
`t(wt)− `t(u)

)
, R̃uT :=

T

∑
t=1

(wt − u)ᵀ∇`t(wt).

Second-order Regret Guarantees

R̃ f
T ≤

√
V f

T K f
T for all f ∈ F (1)

Beats worst-case regret when V f ∗

T = o(T) and K f ∗

T small.

Two Examples

Squint MetaGrad
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Abstract
To get good performance in online convex optimization you need to
select and tune your algorithm based on lots of technical stuff.

Grand goal: single algorithm that works well in all cases.

Multiple Eta Gradient (MetaGrad) algorithm learns optimal learning
rate from data.

Provable Guarantees:

• Robust to worst-case convex losses
• Adapts to curvature (strong-convex, exp-concave)
• Exploits stochastic data (Bernstein)

Online Convex Optimization Setting
1: for t = 1, 2, . . . , T do
2: Learner plays wt in convex domain U
3: Environment reveals convex loss function ft : U → R

4: Learner incurs loss ft(wt), observes gradient gt = ∇ ft(wt)

5: end for

Measure regret w.r.t. u ∈ U : RegretuT =
T

∑
t=1

ft(wt)−
T

∑
t=1

ft(u).

Standard Theory
Rates based on curvature:

Convex ft
√

T GD with ηt ∝ 1√
t

Strongly convex ft ln T GD with ηt ∝ 1
t

Exp-concave ft d ln T ONS with ηt = constant

[Bartlett, Hazan, and Rakhlin, 2007], [Do et al., 2009] handle two
cases: strongly convex + worst-case convex

MetaGrad Covers Many Cases

Convex ft
√

T ln ln T

Exp-concave, strongly convex ft d ln T

β-Bernstein i.i.d. ft (d ln T)
1

2−β T
1−β
2−β

Bernstein distributions with β = 1 very common:

Absolute loss* ft(u) = |u− Xt| ln T

Hinge loss* max{0, 1−Yt〈u,Xt〉} d ln T

Main Theorem
Theorem 1. MetaGrad’s regret is bounded by

RegretuT ≤
T

∑
t=1

(wt − u)ᵀgt ≤ min

{
O
(√

Vu
T d ln T + d ln T

)

O(
√

T ln ln T),

where Vu
T = ∑T

t=1
(
(u−wt)ᵀgt

)2.

Fast Rates: Directional Derivative Condition
Theorem 2. If there exist a, b > 0 such that all ft satisfy

ft(u) ≥ ft(w)+ a(u−w)ᵀ∇ ft(w)+ b
(
(u−w)ᵀ∇ ft(w)

)2 ∀w ∈ U ,

then RegretuT ≤ O(d ln T).

• Satisfied by exp-concave and strongly convex functions
[Hazan, Agarwal, and Kale, 2007] with a = 1.

• Satisfied for any fixed convex function ft = f with minimizer
u, even without any curvature, with a = 2.

Fast Rates: Stochastic Bernstein Condition
Consider ft

iid∼ P with stochastic optimum u∗ = arg minu∈U E f [ f (u)]
satisfying the (linearized) (B, β)-Bernstein condition

E
[(
(w− u∗)ᵀ∇ f (w)

)2
]
≤ B E [(w− u∗)ᵀ∇ f (w)]β ∀w ∈ U .

Example: Hinge loss (unit ball): β = 1, B = 2λmax(E[XXᵀ])
‖E[YX ]‖

Theorem 3 (Koolen, Grünwald, Van Erven, 2016). Turtles all the way down
Or is it?
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E[Regretu
∗

T ] = O
(
(Bd ln T)

1
2−β T

1−β
2−β

)

Experiments (Proof-of-Concept)
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Offline: fixed ft (u) = |u− 1/4| Stochastic Online: ft (u) = |u− Xt | where Xt = ±1/2 i.i.d. w.p. 2/5 and 3/5.

• MetaGrad: O(ln T) regret, AdaGrad: O(
√

T), match bounds

• Functions neither strongly convex nor smooth

MetaGrad Algorithm

η1 η2 η3 η4

· · · ln(T)
Σ1

w1

Σ2

w2

Σ3

w3

Σ4

w4

π

w1

g w2
g

w3

g

w4

g

w

g = ∇ f (w)

w =
∑i πiηiwi

∑i πiηi

πi ← πie−ηiri−η2
i r2

i

where ri = (wi −w)ᵀg

Tilted Exponential Weights

Σi ← (Σ−1
i + 2η2

i gg
ᵀ)−1

wi ← ProjΣi
U (wi − ηiΣig (1 + 2ηiri))

≈ Online Newton Step

Proof Ideas
Analysis based on second-order surrogate loss. For each η:

`
η
t (u) := η(u−wt)

ᵀgt + η2((u−wt)
ᵀgt
)2

Since surrogate is exp-concave for each fixed η, we can use online
quasi-Newton method like Online Newton Step [Hazan et al., 2007]
to get predictions wη

t that achieve logarithmic regret:

T

∑
t=1

`
η
t (w

η
t )−

T

∑
t=1

`
η
t (u) ≤ O(d ln T) ∀u ∈ U

To learn the best η we combine the predictionswη
t for multiple η into

a single master predictionwt using an experts algorithm for combin-
ing multiple learning rates similar to Squint [Koolen and Van Erven,
2015], to get:

T

∑
t=1

`
η
t (wt)

︸ ︷︷ ︸
=0

−
T

∑
t=1

`
η
t (w

η
t ) ≤ O(ln ln T) ∀η

Difficulty: Master has to perform well under multiple loss functions
simultaneously. No standard experts algorithm works!

Together: −∑T
t=1 `

η
t (u) ≤ O(d ln T) for each η and u, resulting in

T

∑
t=1

(wt − u)ᵀgt ≤
O(d ln T)

η
+ ηVu

T ⇒ O
(√

Vu
T d ln T

)
.
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Koolen and Van Erven [2015] Van Erven and Koolen [2016]
Setting Hedge Setting Online Convex Optimization

F expert k ∈ {1, 2, . . .} u ∈ U
Loss Linear wᵀ

t `t Convex `t(wt)
Cmplx. Kk

T = − ln π(k) KuT = d ln T
Variance Vk

T = ∑T
t=1(w

ᵀ
t `t − `k

t )
2 VuT = ∑T

t=1
(
(wt − u)ᵀ∇`t(wt)

)2

Time/rd. O(1) per expert O(d2 ln T) plus projection

First Step

Consider losses ` iid∼ P with stochastic best expert k∗ = arg mink E[`k]

and gap mink 6=k∗ E[`k − `k∗ ] > 0. Then second-order bound (1) im-

plies constant regret E[Rk∗
T ] = O(1) [Gaillard et al., 2014].

Friendly Stochastic Environments
The Bernstein condition [Bartlett and Mendelson, 2006] says that
variance of excess loss is small near stochastic optimum.

Bernstein condition key to fast rates in statistical learning.

Fix B > 0 and κ ∈ [0, 1]. We say

• ` ∼ P are (B, κ)-Bernstein for stochastic experts if

E
[
(`k − `k∗)2] ≤ B E

[
`k − `k∗]κ ∀k.

• ` ∼ P are (linearized) (B, κ)-Bernstein for stochastic OCO if

E
[(
(w− u∗)ᵀ∇`(w)

)2
]
≤ B E[(w− u∗)ᵀ∇`(w)]κ ∀w.

See paper for extensions beyond iid.

Main Theorem
In any stochastic setting satisfying the (B, κ)-Bernstein condition, a second-
order regret bound (1) implies fast rates both in expectation:

E[R f ∗

T ] = O
(

K
1

2−κ
T T

1−κ
2−κ

)
,

and with high probability: for any δ > 0, with probability at least 1− δ,

R f ∗

T = O
(
(KT − ln δ)

1
2−κ T

1−κ
2−κ

)
.

Inspiration: Tsybakov Margin Condition

Classification: Y ∈ {0, 1}. P
(∣∣P(Y = 1|X)− 1/2

∣∣ ≤ t
)
≤ ctα

P
(Y

=
1|

X
)
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Confusing case: predictors with equal risk but opposite predictions.

Hinge Loss Example
Unregularized hinge loss on unit ball.

• Data (xt, yt) ∼ P i.i.d.

• Hinge loss `t(u) = max{0, 1− ytx
ᵀ
t u}.

• Mean µ = E[yx] and second momentD = E[xxᵀ].

• Bernstein with κ = 1 and B =
2λmax(D)

‖µ‖

Absolute Loss Example
Absolute loss:

`t(u) = |u− xt|
where xt = ± 1

2 i.i.d. with probabilities 2/5 and 3/5.
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Individual loss functions Long-term average loss

Bernstein with κ = 1 and B = 5.

Proof Ideas (OCO)
In-expectation for κ = 1: Consider ` ∼ P with stochastic optimum
u∗ = arg minu∈U E [`(u)]. The second-order regret bound (1) implies

E
[
Ru

∗
T
]
≤ E

[
R̃u

∗
T
]
≤ E

[√
Vu∗T Ku∗T

]
≤
√

E
[
Vu∗T

]
Ku∗T .

Let xut := (u− u∗)ᵀ∇`t(u) denote the excess linearzed loss of u in
round t. The Bernstein condition for κ = 1 yields

E
[
Vu

∗
T
]
=

T

∑
t=1

E
[
(xut

t )2] ≤ B
T

∑
t=1

E
[
xut

t
]
= B E

[
R̃u

∗
T
]
.

Combining the above two inequalities and solving for E
[
R̃u

∗
T
]

gives

E
[
Ru

∗
T
]
≤ BKu

∗
T .

For κ < 1: linearize (zκ = κκ(1− κ)1−κ infε>0
{

εκ−1z + εκ
}

for z ≥
0) to show

c1 · ε1−κ E
[
Vu

∗
T

]
≤ E

[
R̃u

∗
T

]
+ c2 · T · ε.

High probability: requires sophisticated martingale argument.


