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ONLINE LEARNING SETTING

Decision Theoretic Online Learning

In rounds t = 1, . . . , T :

1. Assign probabilities wt = (w1
t , . . . , w

K
t ) to

K actions
2. Actions get losses `t ∈ [0, 1]K

3. Our loss: wt · `t

Aim to minimize the regret

R(T ) =
T∑
t=1

wt · `t − L∗T ,

where L∗T = mink
∑T
t=1 `

k
t is the loss of the best

action in hindsight.

MIXABILITY GAP
The mixability gap is

δt(η) = wt · `t −
(
− 1

η ln(wt · e−η`t)
)
.

• In Prediction with Expert Advice terms: δt(η)
measures the difference with a mixable loss
function.

• In Bayesian terms: δt(η) measures the differ-
ence between randomizing according to the
posterior and mixing according to the poste-
rior.

ADAHEDGE
• Tune η optimally for a budget b(η) on the cu-

mulative mixability gap ∆T (η) =
∑T
t=1 δt(η)

• Increase the budget using the doubling trick.

Algorithm

1. Start with η = 1

2. Run a new instance of Hedge with learning
rate η until ∆T (η) exceeds budget

b(η) =
(1

η
+

1

e− 1

)
ln(K).

3. Set η ← η/2 and goto 2.

EXPERIMENTS
Simulation Study on ‘Easy’ Data
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I.I.D. losses Correlated losses

AdaHedge has excellent practical performance

N.B. Follow-the-leader does very well here, but gets linear regret ≥ T/2− 1 in the worst case!

HEDGE
• Hedge predicts with exponential weights:

wkt ∝ exp
(
− η

t−1∑
s=1

`ks

)
.

• Its performance depends strongly on the
learning rate η > 0.

SUMMARY

AdaHedge is a new online
learning algorithm that adapts

to the difficulty of the data

Difficulty Regret

Worst-case data O
(√

L∗T ln(K)
)

NEW Easy data constant: O(K)

Key Ideas

• Bounds on the mixability gap (see top-right
panel) play a crucial role in previous analyses
of the Hedge algorithm.

• We only bound the mixability gap in the
analysis, but not in the algorithm!

• On easy data, the probabilities output by
Hedge converge on a single action. In this
case we improve the standard bounds.

• Example: if one action is always better than
all others.

THEORETICAL RESULTS

AdaHedge is worst-case optimal. . .

Theorem 1 The regret of AdaHedge is bounded by

R(T ) ≤ 5.1
√
L∗T ln(K) +O

(
ln(L∗T + 2) ln(K)

)
.

. . . and has strong theoretical guarantees
on ‘easy’ data

Theorem 2 Suppose the loss vectors `t are inde-
pendent random variables and there exists a k∗ such
that

min
k 6=k∗

E[`kt − `k
∗

t ] > 0 for all t ∈ Z+.

Then with probability at least 1−δ the regret of Ada-
Hedge is bounded by a constant:

R(T ) = O
(
K + log(1/δ)

)
.

FUNDING
PASCAL2 Network of Excellence grant IST-2007-216886 and NWO Rubicon grant 680-50-1010

PROOF TECHNIQUES
Everyone bounds the mixability gap δt.

Standard Analysis

• Optimize η after bounding δt(η) ≤ η/8.

Our Approach

• Optimize η before bounding!
• If the posterior probabilities wt converge on

a single action, the mixability gap goes to 0!

δt(η) ≤ (e− 2)η
(
1−max

k
wkt
)

(0 < η ≤ 1)

CURRENT WORK

Avoid the Doubling Trick

• Better performance in practice

• Still very clean analysis

• Improved the worst-case bound to

R(T ) ≤ 2

√
L∗T (T − L∗T )

T
ln(K) + 8

3 ln(K) + 2.

Weaker Conditions for Easy Data

• Guarantee regret bounded by the best regret
of AdaHedge and Follow-the-Leader, up to
a small constant factor.


