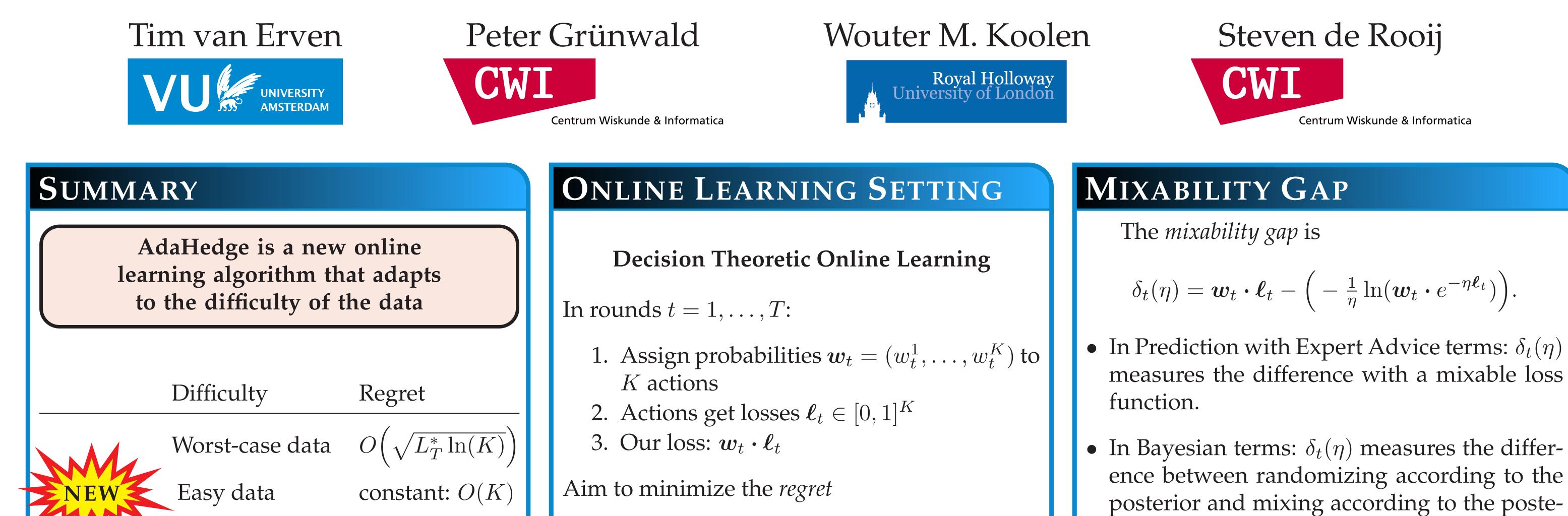
Adaptive Hedge



Key Ideas

- Bounds on the *mixability gap* (see top-right panel) play a crucial role in previous analyses of the Hedge algorithm.
- We only bound the mixability gap in the analysis, but not in the algorithm!
- On easy data, the probabilities output by Hedge converge on a single action. In this case we improve the standard bounds.
- Example: if one action is always better than all others.

$$R(T) = \sum_{t=1}^{T} \boldsymbol{w}_t \cdot \boldsymbol{\ell}_t - L_T^*,$$

where $L_T^* = \min_k \sum_{t=1}^T \ell_t^k$ is the loss of the best action in hindsight.

HEDGE

• Hedge predicts with exponential weights:

$$w_t^k \propto \exp\left(-\eta \sum_{s=1}^{t-1} \ell_s^k\right).$$

• Its performance depends strongly on the *learning rate* $\eta > 0$.

rior.

ADAHEDGE

- Tune η optimally for a budget $b(\eta)$ on the cumulative mixability gap $\Delta_T(\eta) = \sum_{t=1}^T \delta_t(\eta)$
- Increase the budget using the doubling trick.

Algorithm

- 1. Start with $\eta = 1$
- 2. Run a new instance of Hedge with learning rate η until $\Delta_T(\eta)$ exceeds budget

$$b(\eta) = \left(\frac{1}{\eta} + \frac{1}{e-1}\right) \ln(K)$$

3. Set $\eta \leftarrow \eta/2$ and goto 2.

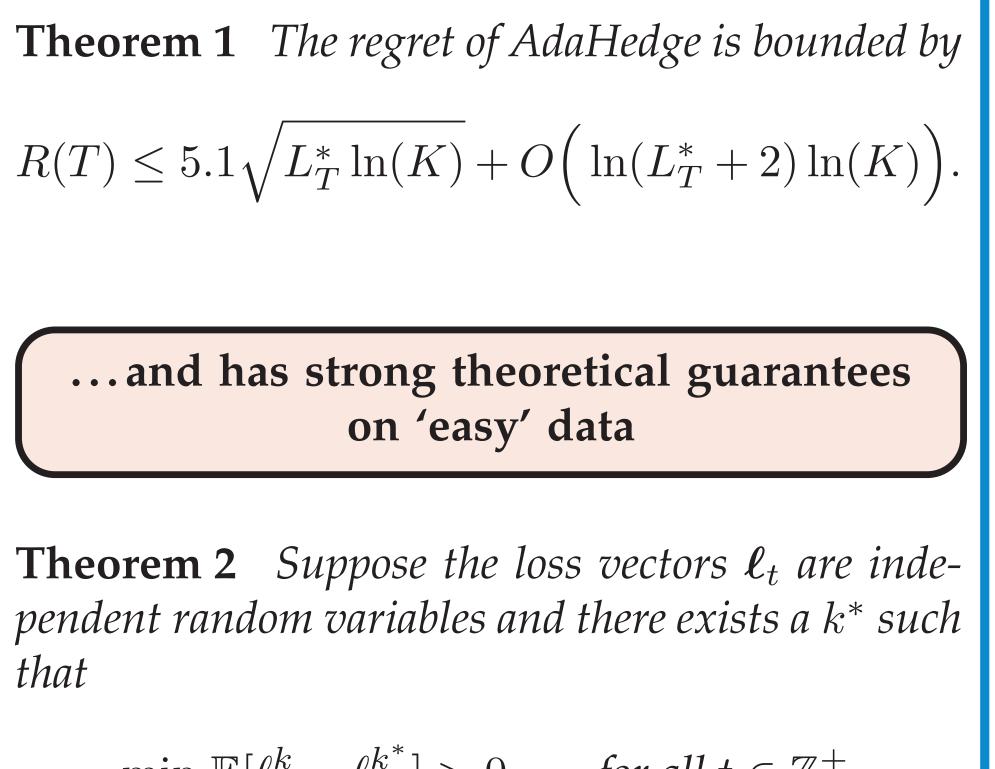
THEORETICAL RESULTS

AdaHedge is worst-case optimal...

EXPERIMENTS

Simulation Study on 'Easy' Data

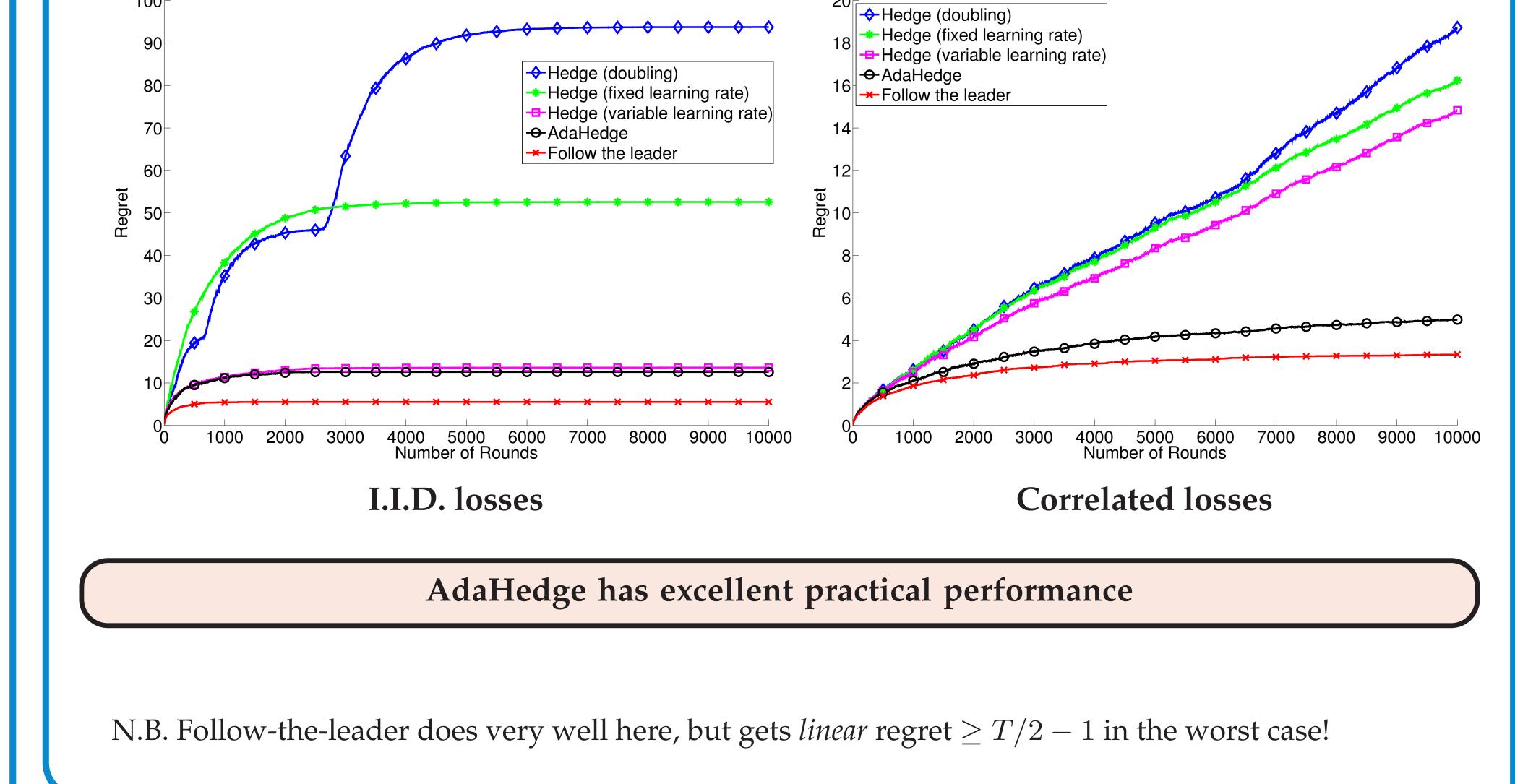
100



 $\min_{k \neq k^*} \mathbb{E}[\ell_t^k - \ell_t^{k^*}] > 0 \quad \text{for all } t \in \mathbb{Z}^+.$

Then with probability at least $1-\delta$ the regret of Ada-*Hedge is bounded by a constant:*

 $R(T) = O\left(K + \log(1/\delta)\right).$



CURRENT WORK

PROOF TECHNIQUES

Everyone bounds the mixability gap δ_t .

Standard Analysis

• Optimize η after bounding $\delta_t(\eta) \leq \eta/8$.

Our Approach

- Optimize η before bounding!
- If the posterior probabilities w_t converge on a single action, the mixability gap goes to 0!

 $\delta_t(\eta) \le (e-2)\eta \left(1 - \max_{k} w_t^k\right) \qquad (0 < \eta \le 1)$

Avoid the Doubling Trick

- Better performance in practice
- Still very clean analysis
- Improved the worst-case bound to

 $R(T) \le 2\sqrt{\frac{L_T^*(T - L_T^*)}{T}}\ln(K) + \frac{8}{3}\ln(K) + 2.$

Weaker Conditions for Easy Data

• Guarantee regret bounded by the best *regret* of AdaHedge and Follow-the-Leader, up to a small constant factor.

FUNDING

PASCAL2 Network of Excellence grant IST-2007-216886 and NWO Rubicon grant 680-50-1010