
Clustering Perturbation Resilient Data

Maria Florina Balcan
School of Computer Science

Georgia Institute of Technology
Atlanta, GA 30332

ninamf@cc.gatech.edu

Yingyu Liang
School of Computer Science

Georgia Institute of Technology
Atlanta, GA 30332

yliang39@gatech.edu

Abstract

Recently, Bilu and Linial [6] formalized an implicit assumption often made when
choosing a clustering objective: that the optimum clustering to the objective
should be preserved under small multiplicative perturbations to distances between
points. Balcan and Liang [4] generalized this to a relaxed notion where the op-
timal clustering after perturbation is allowed to change slightly. In this paper,
we propose an efficient algorithm for k-median instances under the generalized
notion, achieving theoretical guarantees that significantly improve over previous
known results. Additionally, we give a sublinear-time algorithm which can return
an implicit clustering from only access to a small random sample.

1 Introduction

Problems of clustering data from pairwise distance information are a classical topic in machine
learning. A common approach is to optimize various objective functions such as k-median, k-
means or min-sum. However, for most natural clustering objectives, finding the optimal solution is
NP-hard. There has been substantial work on approximation algorithms [10, 7, 5, 8, 1] with both
upper and lower bounds on the approximability of these objectives on worst case instances.

Recently, Bilu and Linial [6] suggested an exciting, alternative approach aimed at understanding the
complexity of practical clustering instances. Motivated by the fact that distances are often based on
a heuristic measure, they argued that interesting instances should be resilient to small perturbations
in these distances. Specifically, they defined an instance to be α-perturbation resilient if perturb-
ing pairwise distances by multiplicative factors in the range [1, α] does not change the optimum
clustering. Balcan and Liang [4] generalized this to a weaker, relaxed, and more realistic notion
of (α, ε)-perturbation resilience where the optimal clustering of the perturbed instance is allowed
to differ from the optimal of the original in a small ε fraction of the points. Compared to the orig-
inal perturbation resilience assumption, this is arguably a more natural though also more difficult
condition to deal with.

In this paper, we propose an efficient algorithm for (α, ε)-perturbation resilient k-median instances,
which for α > 4 produces (1 + O(ε/ρ))-approximation to the optimum, where ρ is the fraction of
the points in the smallest cluster. This significantly improves over the bound α > 2+

√
7 in [4]. The

algorithm is based on the key structural property that, except for εn bad points, most points are α
times closer to their own center than to any other center. To eliminate the noise introduced by the bad
points, we carefully partition the points into a list of sufficiently large blobs, each of which contains
only good points from one optimal cluster. This then allows us to construct a tree on the blobs with
a low-cost pruning that is a good approximation to the optimum. Additionally, the robustness to
the bad points allows us to make the algorithm sublinear-time by returning an implicit clustering
from only a small random sample of the input. The construction of the implicit clustering takes time
poly-logarithmic in the size of the data, which makes the sublinear-time version preferable for large
scale data sets.

1

2 Preliminaries

In a clustering instance, we are given a set S of n points in a finite metric space, and we denote
d : S × S → R≥0 as the distance function. In k-median clustering, we partition S into k disjoint
subsets P = {P1, P2, . . . , Pk} and assign a set of centers p = {p1, p2, . . . , pk} ⊆ S for the subsets.
The goal is to minimize the objective Φ(P,p) =

∑k
i=1

∑
p∈Pi

d(p, pi). When the partition P
is obtained by assigning each point to its nearest center in p, the objective is shorten as Φ(c).
The optimal centers are denoted as c = {c1, . . . , ck}, the optimal clustering is denoted as C =
{C1, C2, . . . , Ck}, and its cost is denoted as OPT .

The core concept we study in this paper is the following (α, ε)-perturbation resilience notion.
Definition 1. Let C be the optimal k-clustering and C′ be another k-clustering of a set of n points.
We say C′ is ε-close to C if minσ∈Sk

∑k
i=1 |Ci \C ′σ(i)| ≤ εn, where σ is a matching between indices

of clusters of C′ and those of C.
Definition 2. A clustering instance (S, d) is (α, ε)-perturbation resilient to a given objective Φ if
for any function d′ : S × S → R≥0 such that ∀p, q ∈ S, d(p, q) ≤ d′(p, q) ≤ αd(p, q), the optimal
clustering C′ for Φ under d′ is ε-close to the optimal clustering C for Φ under d.

3 Clustering (α, ε)-Perturbation Resilient k-Median Instances

In this section we show that if the instance is (α, ε)-perturbation resilient, with α > 4 and ε = O(ε′ρ)
where ρ is the fraction of the points in the smallest cluster, then we can in polynomial time output a
clustering that provides a (1 + ε′)-approximation to the optimum. Formally,
Theorem 1. If the clustering instance is (α, ε)-perturbation resilient for α > 4 and ε ≤ ρ/30 where
ρ = mini |Ci|

n , then Algorithm 1 produces a clustering which is (1+ 5ε
ρ)-approximation to the optimal

clustering with respect to the k-median objective in time O(nω+1), where O(nω) is the state of the
art for matrix multiplication.

This significantly improves over the bound α > 2 +
√

7 in [4]. It also improves over the best
worst-case approximation guarantees known [11] when ε′ ≤

√
3 and also beats the lower bound of

(1 + 1/e) on the best approximation achievable on worst case instances for the metric k-median
objective [9, 10] when ε′ ≤ 1/e.

In the following, we first review the structural properties utilized, and then describe our algorithm
and provide a sketch of the analysis.

3.1 Structural Property

The key structural property we exploit is that, except for εn bad points, most points are α times
closer to their own center than to any other center. Specifically, we call a point good if it is α times
closer to its own center than to any other center in the optimal clustering; otherwise we call it bad.
Let Bi be the set of bad points in Ci. That is, Bi = {p ∈ Ci : ∃j 6= i, αd(ci, p) > d(cj , p)}. Let
Gi = Ci \Bi be the good points in cluster Ci and let B =

⋃
iBi.

Theorem 2. (Theorem 1 in [4]) Suppose the clustering instance is (α, ε)-perturbation resilient and
mini |Ci| > (3 + 2α

α−1)εn+ 9α. Then |B| ≤ εn.

We can see that by definition, the good points are far apart from each other. This then implies that
for any good point, most of its nearest neighbors are from its own optimal cluster. Formally,
Lemma 1. When α > 4, for any good points p1, p2 ∈ Gi, q ∈ Gj(j 6= i), we have d(p1, p2) <
d(p1, q). Consequently, for any good point p ∈ Gi, all its |Gi| nearest neighbors belong to Ci ∪B.

3.2 Approximation Algorithm

In the following, we utilize the bound on the bad points and the property of the good points to
design an efficient approximation algorithm. In order to get rid of the influence of the bad points, we

2

Algorithm 1 k-median, (α, ε) perturbation resilience

1: Input: Distance function d(·, ·) on S, the size of the smallest optimal cluster mini |Ci|, ε > 0
2: Run Algorithm 2 to generate a list L of blobs.
3: Run the robust linkage procedure in [3] to get a cluster tree T .
4: Run dynamic programming on T to get the lowest cost pruning C̃ and its centers c̃.
5: Output: Clustering C̃ and its centers c̃.

Algorithm 2 Generating interesting blobs

1: Input: Distance function d(·, ·) on S, mini |Ci|, ε > 0.
2: Let Nr(p) denote the r nearest neighbors of p in S.
3: Let L = ∅, AS = S. Let the initial threshold t = mini |Ci|.
4: Construct a graph Ft by connecting p, q ∈ AS if |Nt(p) ∩Nt(q)| > t− 2εn.
5: Construct a graph Ht by connecting points p, q ∈ AS that have more than εn neighbors in Ft.
6: Add to L all the components C of Ht with |C| ≥ 1

2 mini |Ci| and remove them from AS .
7: For each point p ∈ AS , check if most of Nt(p) are in L and if there exists C ∈ L containing a

significant number of points in Nt(p). More precisely, check if
(1) |Nt(p) \ L| ≤ 1

2 mini |Ci|+ 2εn;
(2) Lp 6= ∅ where Lp = {C ∈ L : |C ∩Nt(p)| ≥ 2

5 |C|}.
If so, assign p to the blob in Lp of smallest median distance, and remove p from AS .

8: While |AS | > 0, increase t by 1 and go to Step 4.
9: Output: The list L.

generate a list of blobs, which form a partition of the data points, and each of which contains only
good points from one optimal cluster. Then we construct a tree on the list of blobs with a pruning
that assigns all good points correctly. We will show that this pruning has low cost, so the lowest
cost pruning of the tree is a good approximation. The details are described in Algorithm 1. We now
provide a sketch of the analysis of its two key steps and the final approximation guarantee.

Generating Blobs The first key step is to generate the list of almost “pure” blobs, which is described
in Algorithm 2. Informally, the algorithm maintains a threshold t. At each threshold, for each point
p that has not been added to the list, the algorithm checks its t nearest neighborsNt(p). It constructs
a graph Ft by connecting any two points that have most neighbors in common. It then builds
another graph Ht by connecting any two points that have sufficiently many neighbors in Ft, and
adds sufficiently large components in Ht to the list. Finally, for each remaining point p, it checks
if most of p’s neighbors are in the list and if there are blobs containing a significant amount of p’s
neighbors. If so, it inserts p into such a blob with the smallest median distance. Then the threshold
is increased and the above steps are repeated.

The intuition behind Algorithm 2 is as follows. The algorithm works when for any i and any good
point p ∈ Gi, the |Gi| nearest neighbors of p contain no good points outside Ci. To see this, assume
without loss of generality that |C1| ≤ |C2| ≤ · · · ≤ |Ck|. When t ≤ |C1|, good points in different
clusters do not have most neighbors in common and thus are not connected in Ft. However, they
may be connected by a path of bad points. So we further build the graph Ht to disconnect such
paths, which ensures that the blobs added into the list contain only good points from one optimal
cluster. The final insert step (Step 7) makes sure that when t = |C1|, all remaining good points in
C1 will be added to the list and will not affect the construction of blobs from other optimal clusters.
We can show by induction that, at the end of the iteration t = |Ci|, all good points in Cj(j ≤ i) are
added to the list. When t is large enough, any remaining bad points are inserted into the list, so the
points are partitioned into a list of almost pure blobs.

Linking Blobs Another key step is to construct a tree on these blobs. Since good points are
closer to good points in the same optimal cluster than to those in other clusters (Lemma 1),
there exist algorithms that can build a tree with a pruning that assigns all good points correctly.
In particular, we can use the robust linkage procedure in [3], which repeatedly merges the two
blobs C,C ′ with the maximum score(C,C ′) defined as follows. For each p ∈ C, sort the
other blobs in decreasing order of the median distance between p and points in the blob, and let
rank(p, C ′) denote the rank of C ′. Then define rank(C,C ′) = medianx∈C [rank(x,C ′)] and

3

score(C,C ′) = min[rank(C,C ′), rank(C ′, C)]. Intuitively, for any blobs A,A′ from the same
optimal cluster and D from a different cluster, good points in A always rank A′ later than D in
the sorted list, so rank(A,A′) > rank(A,D). Similarly, rank(A′, A) > rank(A′, D), and thus
score(A′, A) > score(A,D). Then the algorithm always merges blobs from the same cluster before
merging them with blobs outside, and thus there is a pruning that assigns all good points correctly.

Approximation Guarantee As described above, Algorithm 2 partitions the points into a list of
blobs, each of which has size at least 1

2 mini |Ci| and contains only good points from one optimal
cluster. Let B′i denote the bad points that are assigned to blobs containing good points in Ci. Then
the robust linkage procedure on L guarantees that {Gi ∪B′i}ki=1 is a pruning of the tree output (see
Theorem 9 in [3]). It suffices to show that this pruning, using the optimal centers {ci}, is a (1 + 5ε

ρ)-
approximation to OPT . Since all good points are correctly assigned, we only need to bound the
cost increased by assigning a bad point q ∈ Ci to a blob containing good points from a different
optimal cluster Cj . Intuitively, the bad point must have many nearest neighbors in that blob, then it
is closer to a significant number of good points in that optimal cluster than to a significant number
of good points in its own optimal cluster. Formally, we have
Lemma 2. If a bad point q ∈ Bi is assigned to a blob C containing good points from a different
optimal clustering Cj , then there exist m = 1

5 mini |Ci| points Zi from Ci, and m points Zj from
Cj , such that d(q, Zi) ≥ d(q, Zj). Consequently, d(q, cj)− d(q, ci) ≤ OPTm .

As there are at most εn bad points and m = mini |Ci|
5 , the increase of cost is at most 5ε

ρ OPT .

4 Sublinear Time Algorithm for (α, ε)-Perturbation Resilient Instances

Many clustering applications have recently faced an explosion of data, and it is often expensive
to run an algorithm over the entire data. Here we show that for perturbation resilient k-median
instances, we can overcome this difficulty by running our algorithm on a small random sample.

More precisely, consider a clustering instance (X, d) that is (α, ε)-perturbation resilient to k-median.
For simplicity, suppose the distances are normalized to [0, 1]. LetN = |X| and let ρ = mini |Ci|/N
denote the fraction of the points in the smallest cluster. Let ΦX denote the cost on X , and let
ζ = ΦX(c)/N denote the average cost of the points in the optimum clustering.
Theorem 3. Suppose (X, d) is (α, ε)-perturbation resilient for α > 4, ε < ρ/100. Then with
probability ≥ 1 − δ, we can get an implicit clustering that is 2(1 + 16ε

ρ)-approximation in time
poly(log N

δ , k,
1
ε ,

1
ζ).

The main idea is to run Algorithm 1 on a random sample S of size n = Θ(k
ε2ζ2 ln N

δ) to obtain the
minimum cost pruning and the corresponding centers c̃. Then the implicit clustering of the whole
space X assigns each point in X to its nearest center in c̃.

In the following, we describe the idea to show that c̃ is a good approximation solution to the optimal
centers c for X . First, when n is sufficiently large, with high probability, ΦX(c̃)/N ≈ ΦS(c̃)/n
and ΦX(c)/N ≈ ΦS(c)/n. Then it is sufficient to show ΦS(c̃) is close to ΦS(c). Next, we can
show that Algorithm 1 builds a tree with a pruning P ′ that assigns all good points correctly. The key
is to use the cost of this pruning as a bridge for comparing ΦS(c̃) and ΦS(c).

On one hand, ΦS(c̃) ≤ ΦS(C̃, c̃) ≤ ΦS(P ′, c′). The first inequality comes from the fact that in
ΦS(c̃) each point is assigned to its nearest center and the second comes from the fact that C̃ is
the minimum cost pruning. On the other hand, ΦS(P ′, c′) ≤ 2ΦS(P ′, c) ≤ 2(1 + 12ε

ρ)ΦS(c). The
second inequality comes from an argument similar to that in Theorem 1 and the fact that ΦS(P ′, c) is
different from ΦS(c) only on the bad points. The first inequality comes from the triangle inequality.
More precisely, for any cluster N ′i ∈ P ′,

2|N ′i |
∑
p∈N ′

i

d(p, ci) =
∑

p,q∈N ′
i

[d(p, ci)+d(q, ci)] ≥
∑

p,q∈N ′
i

d(p, q) ≥
∑

p,q∈N ′
i

d(q, c′i) = |N ′i |
∑
q∈N ′

i

d(q, c′i).

Note: If we have an oracle that given a set of points C ′i finds the best center in X for that set, then
we can save a factor of 2 in the bound.

4

References

[1] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit. Local search
heuristics for k-median and facility location problems. SIAM Journal of Computing, 2004.

[2] P. Awasthi, A. Blum, and O. Sheffet. Center-based clustering under perturbation stability.
Information Processing Letters, 2012.

[3] M. F. Balcan and P. Gupta. Robust hierarchical clustering. In Proceedings of the Annual
Conference on Learning Theory, 2010.

[4] M. F. Balcan and Y. Liang. Clustering under perturbation resilience. In Proceedings of the
International Conference on Automata, Languages, and Programming. 2012.

[5] Y. Bartal, M. Charikar, and D. Raz. Approximating min-sum k-clustering in metric spaces. In
Proceedings of the Annual ACM Symposium on Theory of Computing, 2001.

[6] Y. Bilu and N. Linial. Are stable instances easy? In Proceedings of the Symposium on Innova-
tions in Computer Science, 2010.

[7] M. Charikar, S. Guha, É. Tardos, and D. B. Shmoys. A constant-factor approximation algo-
rithm for the k-median problem. Journal of Computer and System Sciences, 2002.

[8] W. F. de la Vega, M. Karpinski, C. Kenyon, and Y. Rabani. Approximation schemes for clus-
tering problems. In Proceedings of the Annual ACM Symposium on Theory of Computing,
2003.

[9] S. Guha and S. Khuller. Greedy strikes back: Improved facility location algorithms. Journal
of Algorithms, 1999.

[10] K. Jain, M. Mahdian, and A. Saberi. A new greedy approach for facility location problems. In
Proceedings of the Annual ACM Symposium on Theory of Computing, 2002.

[11] S. Li and O. Svensson. Approximating k-median via pseudo-approximation. In Proceedings
of the ACM Symposium on the Theory of Computing, 2013.

5

	Introduction
	Preliminaries
	Clustering (,)-Perturbation Resilient k-Median Instances
	Structural Property
	Approximation Algorithm

	Sublinear Time Algorithm for (,)-Perturbation Resilient Instances

