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Outline

● Follow-the-Leader:
– works well for `easy' data: few leader changes, i.i.d.

– but not robust to worst-case data

● Exponential weights with simple tuning:
– robust, but does not exploit easy data

● Second-order bounds:
– robust against worst case + can exploit i.i.d. data

– but do not exploit few leader changes in general

● FlipFlop: robust + as good as FTL



  

Sequential Prediction
with Expert Advice

●    experts sequentially predict data 
● Goal: predict (almost) as well as the best 

expert on average 
● Applications:

– online convex optimization

– predicting electricity consumption

– predicting air pollution levels

– spam detection

– ...



  

Set-up: Repeated Game

●  Every round                  :

1. Predict probability distribution                        
                                   on experts  

2. Observe expert losses 

3. Our loss is 

Goal: minimize regret

where

Loss of the best expert



  

Follow-the-Leader

● Deterministically choose the expert that has 
predicted best in the past:

● Equivalently:

where



  

FTL: the Good News

● Regret bounded by nr of leader changes
● Proof sketch:

– If the leader does not change, our loss is the 
same as the loss of the leader, so the regret 
stays the same

– If the leader does change, our regret 
increases at most by 1 (range of losses)

● Works well for i.i.d. losses, because the leader 
changes only finitely many times w.h.p. 



  

FTL on IID Losses

● 4 experts with Bernoulli 0.1, 0.2, 0.3, 0.4 
losses 



  

FTL Worst-case Losses



  

Exponential Weights

● Follow-the-Leader:

● Exponential weights: add KL divergence 
from uniform distribution as a regularizer

●           : recover FTL (aggressive learning)

● As   closer to   : closer to uniform distribution
(more conservative learning)



  

Simple Tuning: the Good News

● Worst-case optimal for                         :

● Proof idea:
– approximate our loss: 

– by the mix loss: 

– and bound the approximation error:

Regret



  

Simple Tuning: the Good News

● Cumulative mix loss is close to     :

● Hoeffding's bound:

● Together:

our loss = mix loss + approx. error

Balances the two terms



  

Lost Advantages of FTL

● Simple tuning does much worse than FTL on 
i.i.d. losses



  

Simple Tuning: the Bad News

● The bad news:
–                            = conservative learning

– In practice, better when learning rate does 
not go to 0 with    ! [DGGS, 2013]

– Lost advantages of FTL!

● We want to exploit luckiness: 
– robust against worst-case losses; but

– if the data are `easy', we should learn faster!



  

Luckiness: Exploiting Easy Data

● Improvement for small losses:

● Second-order Bounds:
– [CBMS, 2007] and AdaHedge:  
– Related bound by [HK, 2008] 

Regret

variance of
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Regret
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2nd-order Bounds: I.I.D. Data

● Regret bound: 

● For IID data,     concentrates fast on best 
expert: 

Regret

variance of



  

2nd-order Bounds: I.I.D. Data

Recover FTL benefits for i.i.d. data



  

CBMS: Proof Idea

● Cumulative mix loss is close to     :

● Bernstein's bound:

● Together:

our loss = mix loss + approx. error

Regret

balancing



  

AdaHedge: Proof Idea

● Cumulative mix loss is close to     :

● No bound:

● Together:

our loss = mix loss + approx. error

Regret

balancing



  

AdaHedge: Proof Idea

● Cumulative mix loss is close to     :

● No bound:

● Together:

our loss = mix loss + approx. error

Regret

NB Bernstein's bound is 
pretty sharp, so in practice 
CBMS ≈ AdaHedge up to 
constants.

balancing



  

Tuning   Online

● Balancing   in CBMS and AdaHedge depends 
on unknown quantities

● Solve this by changing          with  
● Problem:                                breaks

Lemma [KV, 2005]: If                                , then



  

2nd-order Bounds: the Bad News

● Do not recover FTL benefits for other ̀ easy' 
data with a small number of leader changes



  

Luckiness: Exploiting Easy Data

● Improvement for small losses:

● Second-order Bounds:
– [CBMS, 2007] and AdaHedge:  
– Related bound by [HK, 2008]

● FlipFlop:
– “Follow the leader if you can, Hedge if you must”

– Regret     best of AdaHedge and FTL 

Regret



  

FlipFlop

● FlipFlop bound:

 
● Alternate Flip and Flop regimes

– Flip: Tune             like FTL

– Flop: Tune     like AdaHedge
● (No restarts of the algorithm, like in `doubling trick'!)

Regret
FTL Regret
AdaHedge Regret Bound



  

FlipFlop: Proof Ideas

● Alternate Flip and Flop regimes
– Flip: Tune             like FTL

– Flop: Tune     like AdaHedge

● Analysing two regimes:

1. Relate mix loss for Flip to mix loss for Flop

2. Keep approximation errors balanced between
  regimes



  

1. Relating Mix Losses

● We violate condition of KV-lemma:

● But:



  

2. Balance Approximation Errors

● Alternate regimes to keep approximation 
errors balanced:

Regret

FTL Bound
AdaHedge Bound



  

Small Nr Leader Changes Again

● FlipFlop exploits easy data,
AdaHedge does not



  

FTL Worst-case Again



  

Summary

● Follow-the-Leader:
– works well for `easy' data: i.i.d., few leader changes

– but not robust to worst-case data

● Second-order bounds (e.g. CBMS, AdaHedge):
– robust against worst case + can exploit i.i.d. data

– but do not exploit few leader changes in general

● FlipFlop: best of both worlds



  

Luckiness: What's Missing?

● FlipFlop:
– “Follow the leader if you can, Hedge if you must”

– Regret     best of AdaHedge and FTL 

● But what if optimal   is in between AdaHedge 
and FTL?

● Can we compete with the best possible  
chosen in hindsight?
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EXTRA SLIDES



  

● Common assumption                  requires 
translating and rescaling the losses

● CBMS:
– Extension so this is not necessary. 

Important when range of losses is unknown!

● AdaHedge and FlipFlop:
– Invariant under rescaling and translation of 

losses, so get this for free.

No Need to Pre-process Losses



  

2nd-order Bounds: I.I.D. Data

● Regret bound: 
● If     concentrates fast on best expert, then 

● IID data:

1. Balancing                         is large for all 

2.      concentrates fast

3. Then 1. also holds for 

Regret

variance of



  

FlipFlop on I.I.D. Data



  

Example: Spam Detection



  

Example: Spam Detection

● Data:           with                    
● Predictions: probability              that  
● Loss (probability of wrong label):   

● Experts:    spam detection algorithms 
● If expert   predicts      , then  
● Regret: expected nr. mistakes over expected 

nr. of mistakes of best algorithm



  

FTL: the Bad News

● Consider two trivial spam detectors (experts):

● If we deterministically choose an expert 
(like FTL) then we could be wrong all the time:

Regret:
● Let    denote the number of times expert 1 has 

loss 1. Then  
● Linear regret = 


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

