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Outline
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* When?

(How?)

* Why?



Estimating the Bias of a Coin
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Optimistic VC bound

(aka L™-bound, multiplicative bound)

— L* = inf L(h
h = arg}lrélﬁL(h) fiIel’H (h)

* For a hypothesis class with VC-dim D, w.p. 1-6 over n samples:

Dlog2er + logZ

n

L(h) < L* —|—\/8



Optimistic VC bound

(aka L™-bound, multiplicative bound)

h = argixélﬁ L(h) L* = h}IEl% L(h)

* For a hypothesis class with VC-dim D, w.p. 1-6 over n samples:

Dlog2en + log N 4Dlog2€” + log2
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L(h) < L* + 2\/L*

Dlog2¢en + log2
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* Sample complexity to get L(h) < L* + €:
n(e) =0 (2 L Elog(l/cf)) =0 (9 L 6)

€ € € €

e Extends to bounded real-valued loss, D=VC subgraph dim



From Parametric to

Scale Sensitive Classes
L(h) = B, [6(h(z),)]

* Instead of VC-dim or VC-subgraph-dim (= #params), rely on
metric scale to control complexity, e.g.: R

H=1hw:w—=(w,x)||w|, < B} R (H) = \/@2 sup||x||2

* Learning depends on:

* Metric complexity measures: fat shattering dimension, covering
numbers, Rademacher Complexity

* Scale sensitivity of loss ¢ (bound on derivatives or “margin”)

* For Hwith Rademacher Complexity R,,, and |¢’'| < G:

) < L* + 2GR, \/ log(2/9)
2n

[ \f g< o (\/GQR—I—log(Q/cS))




Non-Parametric Optimistic Rate
for Smooth Loss

* Theorem: for any H with (worst case) Rademacher Complexity
R, (H), and any smooth loss with |¢p"| < H, |¢p| < b, w.p. 1 —
6 over n samples: [S Sridharan Tewari 2010]

L(h) < inf (1+a)L" + (1+3)K (HR% log®(n) + blogfll/é))

[ R, < \/E :L*—I—O(\/L*HRR—FHR%)

~ L*HR H
:L*+O(\/ R+R)
n n

* Sample complexity

R L*+e¢

€ €

n(e):0< R L*+e)

og'(R)e)) =0 (2
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Proof Ideas

* Smooth functions are self bounding: for any H-smooth non-
negative f:

f'(O < JAHF (L)

« 2" order version of Lipschitz composition Lemma, restricted to
predictors with low loss:

R (L(r) < 21V6Hr log/?(64n) R (H)
£(r) = {(@.y) = o(h(@).v) | h € H.L(R) <7}

Rademacher - fat shattering 2 L, covering =2 (compose with loss and
use smoothness) =2 L, covering > Rademacher

* Local Rademacher analysis



Non-Parametric Optimistic Rate
for Smooth Loss

* Theorem: for any H with (worst case) Rademacher Complexity
R, (H), and any smooth loss with |[¢p"'| < H, |¢p| < b, w.p. 1 —
6 over n samples: [S Sridharan Tewari 2010]

L(h) < inf (1+a)L" + (1+3)K (HR% log®(n) + blogfll/‘s))

[ R, < \/E —L*+0 (\/L*HR,,,,, + HR%)

~ L*HR H
:L*+O(\/ B+R)
n n

* Sample complexity

R L*+e¢
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n(e):0< R L*+e)

og'(R)e)) =0 (2

€ €



Parametric vs Non-Parametric

Parametric Scale-Sensitive

dim(#) <D, |h| <1 R, (3) < \/@

(e.g. hinge, ;) 2
1 GD + L*G—D G“R

Lipschitz: |¢p'| < G

Smooth: |[¢''| < H
(e.g. logistic, Huber, HD
smoothed hinge) n n n n

Smooth & strongly convex:

A< ¢"<H H HD HR 4 [,.HR
(e.g. square loss) A n

Min-max tight up to poly-log factors



Optimistic SVM-Type Bounds

Do1 < ¢hinge

* Optimize
* Generalize




Optimistic SVM-Type Bounds

Poi < O < Phinge

* Generalize * Optimize

) o R R
Lo1 (hhinge) < Lhinge + 0 (\/Lﬁinge_ + )

n n



Optimistic Learning Guarantees

L(h) < (1+a)L* + (14 )0 (5)

=0 (-5

€ €

v'Parametric classes

v'Scale-sensitive classes with smooth loss

v SVM-type bounds

v'"Margin Bounds

v'Online Learning/Optimization with smooth loss
v/Stability-based guarantees with smooth loss

x Non-param (scale sensitive) classes with non-smooth loss
x Online Learning/Optimization with non-smooth loss



Why Optimistic Guarantees?

L(h) < (1+a)L* + (14 )0 (5)

=0 (-5

€ €

* Optimistic regime typically relevant regime:
* Approximation error L* = Estimation error €

e If e K L%, better to spend energy on lowering approx. error
(use more complex class)

* Important in understanding statistical learning



Training Kernel SVMs

# Kernel evaluations to get excess error €: (R = |[|[w*||?)
* Using SGD: ;
T(e) = O (n(e)?) = O ( i (L*€+c)2)
* Using the Stochastic Batch Perceptron [cotter et al 2012]:
2 .
T(e) =0 (R (L*fc)&)

€

€

(is this the best possible?)



Training Linear SVMs

Runtime (# feature evaluations): (R = [|[w*||?)
* Using SGD:
) (R, .
7() = O an(e)) = 0 (42 ()

€

¢ Using SIMBA [Hazan et al 2011].

O ((d+n(e)- R(E+)’)
0 (dr(v) + RE (1))

€

T (¢)

(is this the best possible?)



Mini-Batch SGD

* Stochastic optimization of smooth L(w) using n training-points,
doing T=n/b iterations of SGD with mini-batches of size b

e Pessimistic Analysis (ignoring L*):

2
L(wr) <O ( G°R + HRb)

n n

=» Can use minibatch of size b o< \/n, with T « +/n iterations and get same
error (up to constant factor) as sequential SGD
[Dekel et al 2010][Agarwal Duchi 2011]

e But taking into account L*:

L*HR HR HRb
L(wr) <O (\/ + + )
n n n

=2 In Optimistic Regime: Can’t use b>1, no parallelization speedups!
» Use acceleration to get speedup in optimistic regime © [Cotter et al 2011]




Multiple Complexity Controls

[Liang Srebro 2010]

Liw) = E[((w,X)—Y)?], Y =(w,X)+ N(0,0%)
w E RP lw||* <R

R/E[Y?] R/L* L*D%/R



Be Optimistic
=0 (-5

€ €

n

L(h) < (1+a)L* + (14 )0 (5)

* For scale-sensitive non-parametric classes, with smooth
loss: [Srebro Sridharan Tewari 2010]

 Diff vs parametric: Not possible with non-smooth loss!

* Optimistic regime typically relevant regime:
* Approximation error L™ = Estimation error €

e If e K L%, better to spend energy on lowering approx. error (use
more complex class)

* Important in understanding statistical learning



