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Outline

•What?

•When?

(How?)

•Why?



Estimating the Bias of a Coin



Optimistic VC bound
(aka 𝐿∗-bound, multiplicative bound)

• For a hypothesis class with VC-dim D, w.p. 1-𝛿 over n samples:



Optimistic VC bound
(aka 𝐿∗-bound, multiplicative bound)

• For a hypothesis class with VC-dim D, w.p. 1-𝛿 over n samples:

• Sample complexity to get 𝐿 ℎ ≤ 𝐿∗ + 𝜖:

• Extends to bounded real-valued loss, D=VC subgraph dim



From Parametric to 
Scale Sensitive Classes

• Instead of VC-dim or VC-subgraph-dim (≈ #params), rely on 
metric scale to control complexity, e.g.:

• Learning depends on:
• Metric complexity measures: fat shattering dimension, covering 

numbers, Rademacher Complexity

• Scale sensitivity of loss 𝜙 (bound on derivatives or “margin”)

• For ℋwith Rademacher Complexity ℛ𝑛, and 𝜙′ ≤ 𝐺:

𝑅=



Non-Parametric Optimistic Rate 
for Smooth Loss

• Theorem: for any ℋ with (worst case) Rademacher Complexity 
ℛ𝑛(ℋ), and any smooth loss with 𝜙′′ ≤ 𝐻, 𝜙 ≤ 𝑏, w.p. 1 −
𝛿 over n samples: [S Sridharan Tewari 2010]

• Sample complexity



Proof Ideas

• Smooth functions are self bounding: for any H-smooth non-
negative f:

𝑓′ 𝑡 ≤ 4𝐻𝑓 𝑡

• 2nd order version of Lipschitz composition Lemma, restricted to 
predictors with low loss:

Rademacher fat shattering  𝐿∞ covering  (compose with loss and 
use smoothness)  𝐿2 covering  Rademacher

• Local Rademacher analysis



Non-Parametric Optimistic Rate 
for Smooth Loss

• Theorem: for any ℋ with (worst case) Rademacher Complexity 
ℛ𝑛(ℋ), and any smooth loss with 𝜙′′ ≤ 𝐻, 𝜙 ≤ 𝑏, w.p. 1 −
𝛿 over n samples: [S Sridharan Tewari 2010]

• Sample complexity



Parametric vs Non-Parametric

Parametric
dim(ℋ) ≤ 𝐃, 𝒉 ≤ 𝟏

Scale-Sensitive

ℛ𝒏 ℋ ≤  𝑹 𝒏

Lipschitz: 𝜙′ ≤ 𝐺
(e.g. hinge, ℓ1) 𝐺 𝐷

𝑛 + 𝐿∗
𝐺𝐷
𝑛

𝐺2𝑅
𝑛

Smooth: 𝜙′′ ≤ 𝐻
(e.g. logistic, Huber, 
smoothed hinge)

𝐻 𝐷
𝑛 + 𝐿∗

𝐻𝐷
𝑛

𝐻 𝑅
𝑛 + 𝐿∗

𝐻𝑅
𝑛

Smooth & strongly convex: 
𝜆 ≤ 𝜙′′ ≤ 𝐻
(e.g. square loss)

𝐻

𝜆
⋅
𝐻 𝐷

𝑛
𝐻 𝑅
𝑛 + 𝐿∗

𝐻𝑅
𝑛

Min-max tight up to poly-log factors



Optimistic SVM-Type Bounds

𝜙01
𝜙hinge≤

• Optimize
• Generalize



Optimistic SVM-Type Bounds

𝜙01 ≤ 𝜙smooth≤
𝜙hinge

• Optimize• Generalize



Optimistic Learning Guarantees

Parametric classes
Scale-sensitive classes with smooth loss
SVM-type bounds
Margin Bounds
Online Learning/Optimization with smooth loss
Stability-based guarantees with smooth loss

× Non-param (scale sensitive) classes with non-smooth loss
× Online Learning/Optimization with non-smooth loss 



Why Optimistic Guarantees?

• Optimistic regime typically relevant regime:
• Approximation error 𝐿∗ ≈ Estimation error 𝜖

• If 𝜖 ≪ 𝐿∗, better to spend energy on lowering approx. error 
(use more complex class)

• Important in understanding statistical learning



Training Kernel SVMs

# Kernel evaluations to get excess error 𝜖:  (𝑅 = 𝑤∗ 2)

• Using SGD: 

• Using the Stochastic Batch Perceptron [Cotter et al 2012]:

(is this the best possible?)



Training Linear SVMs

Runtime (# feature evaluations):     (𝑅 = 𝑤∗ 2)

• Using SGD:

• Using SIMBA [Hazan et al 2011]:

(is this the best possible?)



Mini-Batch SGD
• Stochastic optimization of smooth 𝐿 𝑤 using n training-points, 

doing T=n/b iterations of SGD with mini-batches of size b

• Pessimistic Analysis (ignoring 𝐿∗):

 Can use minibatch of size 𝑏 ∝ 𝑛 , with 𝑇 ∝ 𝑛 iterations and get same 
error (up to constant factor) as sequential SGD

[Dekel et al 2010][Agarwal Duchi 2011]

• But taking into account 𝐿∗:

In Optimistic Regime: Can’t use b>1, no parallelization speedups!

• Use acceleration to get speedup in optimistic regime  [Cotter et al 2011]



Multiple Complexity Controls
[Liang Srebro 2010]

𝐿 𝑤 = 𝔼 𝑤, 𝑋 − 𝑌 2 ,     𝑌 = 𝑤, 𝑋 +𝒩(0, 𝜎2)

𝑤 ∈ ℝ𝐷 𝑤 2 ≤ 𝑅

𝐿∗/𝐷

𝑅/𝑛

𝐿∗𝑅/𝑛

𝐿∗𝐷/𝑛

𝔼[𝑌2]

𝐿∗

𝑅/𝔼[𝑌2] 𝑅/𝐿∗ 𝐿∗𝐷2/𝑅



Be Optimistic

• For scale-sensitive non-parametric classes, with smooth 
loss: [Srebro Sridharan Tewari 2010]
• Diff vs parametric: Not possible with non-smooth loss!

• Optimistic regime typically relevant regime:
• Approximation error 𝐿∗ ≈ Estimation error 𝜖
• If 𝜖 ≪ 𝐿∗, better to spend energy on lowering approx. error (use 

more complex class)

• Important in understanding statistical learning


