Learning a set of directions

Wouter M. Koolen Jiazhong Nie Manfred K. Warmuth

Motivation

Measuring gain

Algorithm

Conclusion

Problem

Parts of my home town Amsterdam lie 5 metres below sea level

Solution

Pump out water

Leeghwater (1607)

This is how we do it

And then global warming sets in . . .

Online learning to the rescue

For t = 1, 2, ...

- ightharpoonup Mill chooses a direction u_t
- lacktriangle Wind reveals direction $oldsymbol{x}_t$
- Gain based on match

What is a reasonable gain?

Gain quantifies quality of prediction u upon outcome $oldsymbol{x}$

Gain quantifies quality of prediction u upon outcome $oldsymbol{x}$

Perhaps the simplest gain is the

angle cosine $\coloneqq u^{\mathsf{T}} x$

Gain quantifies quality of prediction u upon outcome $oldsymbol{x}$

Perhaps the simplest gain is the

angle cosine $:= u^{\mathsf{T}} x$

best when u,x parallel, worst when u,x opposite

Gain quantifies quality of prediction u upon outcome $oldsymbol{x}$

Perhaps the simplest gain is the

angle cosine
$$:= u^{\mathsf{T}} x$$

best when u,x parallel, worst when u,x opposite

Another gain is used in Principal Component Analysis

subspace similarity
$$\coloneqq \left(u^\intercal x\right)^2$$

Gain quantifies quality of prediction \boldsymbol{u} upon outcome \boldsymbol{x}

Perhaps the simplest gain is the

angle cosine
$$:= u^{\mathsf{T}} x$$

best when u,x parallel, worst when u,x opposite

Another gain is used in Principal Component Analysis

subspace similarity
$$\coloneqq \left(u^\intercal x\right)^2$$

best when u,x parallel or opposite

Gain quantifies quality of prediction u upon outcome x

Perhaps the simplest gain is the

angle cosine
$$= u^{\mathsf{T}}x$$

best when u,x parallel, worst when u,x opposite

Another gain is used in Principal Component Analysis

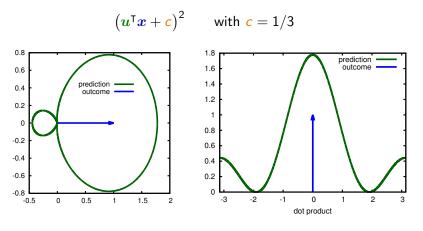
subspace similarity
$$:= (u^{\mathsf{T}}x)^2$$

best when u,x parallel or opposite

Our solution: controlled trade-off (windmill-dependent constant c)

directional gain :=
$$(u^{\mathsf{T}}x + c)^2$$

Visualisation of directional gain



Gain expansion

For randomised prediction $u \sim \mathbb{P}$:

$$\mathbb{E}\left[\left(u^{\mathsf{T}}x+c\right)^{2}\right] = \mathbb{E}\left[x^{\mathsf{T}}uu^{\mathsf{T}}x+2cx^{\mathsf{T}}u+c^{2}\right]$$
$$= x^{\mathsf{T}}\mathbb{E}\left[uu^{\mathsf{T}}\right]x+2cx^{\mathsf{T}}\mathbb{E}\left[u\right]+c^{2}.$$

Only relevant characteristics of $\ensuremath{\mathbb{P}}$ are its

$$\mu \coloneqq \mathbb{E}[u]$$
 first moment vector $D \coloneqq \mathbb{E}[uu^\intercal]$ second moment matrix

Observation: gain is linear in μ and in D

Gain expansion

For randomised prediction $u \sim \mathbb{P}$:

$$\mathbb{E}\left[\left(u^{\mathsf{T}}x+c\right)^{2}\right] = \mathbb{E}\left[x^{\mathsf{T}}uu^{\mathsf{T}}x+2cx^{\mathsf{T}}u+c^{2}\right]$$
$$= x^{\mathsf{T}}\mathbb{E}\left[uu^{\mathsf{T}}\right]x+2cx^{\mathsf{T}}\mathbb{E}\left[u\right]+c^{2}.$$

Only relevant characteristics of \mathbb{P} are its

$$\mu \coloneqq \mathbb{E}[u]$$
 first moment vector $D \coloneqq \mathbb{E}[uu^{\intercal}]$ second moment matrix

Observation: gain is linear in μ and in D

Idea: forget ${\mathbb P}$ - use μ and D as a parameter

Gain expansion

For randomised prediction $u \sim \mathbb{P}$:

$$\mathbb{E}\left[\left(u^{\mathsf{T}}x+c\right)^{2}\right] = \mathbb{E}\left[x^{\mathsf{T}}uu^{\mathsf{T}}x+2cx^{\mathsf{T}}u+c^{2}\right]$$
$$= x^{\mathsf{T}}\mathbb{E}\left[uu^{\mathsf{T}}\right]x+2cx^{\mathsf{T}}\mathbb{E}\left[u\right]+c^{2}.$$

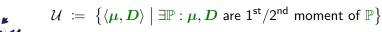
Only relevant characteristics of \mathbb{P} are its

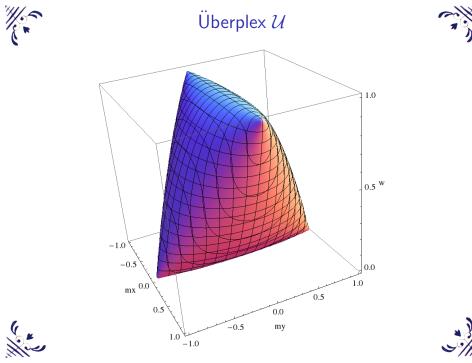
$$\mu \coloneqq \mathbb{E}[u]$$
 first moment vector $D \coloneqq \mathbb{E}[uu^\intercal]$ second moment matrix

Observation: gain is linear in μ and in D

Idea: forget \mathbb{P} - use μ and D as a parameter

Careful: not all $\langle \mu, D \rangle$ are moments of some $\mathbb{P}!$ Parameters must lie in the **überplex**





Characterisation

Theorem

$$\langle \mu, D
angle \in \mathcal{U} \qquad \mathit{iff} \qquad \mathsf{tr}(D) \ = \ 1 \quad \mathit{and} \quad D \ \succeq \ \mu \mu^\intercal$$

Characterisation

Theorem

$$\langle \mu, D
angle \in \mathcal{U}$$
 iff $\mathsf{tr}(D) = 1$ and $D \succeq \mu \mu^\intercal$

Why this is important?

- ▶ Überplex *U* is convex
 - Constraint is semi-definite
- lacktriangleright Efficient numerical linear/convex optimization over ${\cal U}$

Offline problem

$$\max_{(\mu,D)\in\mathcal{U}} \sum_{t=1}^{I} \left(\boldsymbol{x}_{t}^{\mathsf{T}} \boldsymbol{D} \boldsymbol{x}_{t} + 2\boldsymbol{c} \boldsymbol{\mu}^{\mathsf{T}} \boldsymbol{x}_{t} + \boldsymbol{c}^{2} \right)$$

Semi-definite optimisation problem Good numerical methods

"Our" algorithm: gradient descent

Maintains the two moments $(\mu_t, D_t) \in \mathcal{U}$ as parameter At trial $t = 1 \dots T$

- 1. Mill decomposes parameter (μ_t, D_t) into a mixture of 6 directions and draws a direction u_t at random from it
- 2. Wind reveals direction $\boldsymbol{x}_t \in \mathbb{R}^2$
- 3. Mill receives expected gain $\mathbb{E}\left[(u_t^\intercal x_t + c)^2\right]$
- 4. Mill updates (μ_t, D_t) to $(\widehat{\mu}_{t+1}, \widehat{D}_{t+1})$ based on the gradient of the expected gain on x_t

$$\widehat{\mu}_{t+1} \ \coloneqq \ \mu_t + 2\eta \frac{\mathbf{c}}{\mathbf{c}} \, \mathbf{x}_t \qquad \text{and} \qquad \widehat{D}_{t+1} \ \coloneqq \ D_t + \eta \, \mathbf{x}_t \mathbf{x}_t^\mathsf{T}$$

5. Mill produces new parameter (μ_{t+1}, D_{t+1}) by projecting $(\widehat{\mu}_{t+1}, \widehat{D}_{t+1})$ back into the überplex

$$egin{aligned} ig(\mu_{t+1},D_{t+1}ig) &\coloneqq & \mathop{\mathsf{argmin}}_{(\mu,D)\in\mathcal{U}} \|D-\widehat{D}_{t+1}\|_F^2 + \|\mu-\widehat{\mu}_{t+1}\|^2 \end{aligned}$$

Guarantees

regret := hindsight-optimal gain − actual gain of Mill

Theorem

The expected regret after T trials of the GD algorithm with learning rate $\eta = \sqrt{\frac{3/2}{(4c^2+1)T}}$ and initial parameters $\mu_1 = \mathbf{0}$ and $D_1 = \frac{1}{2}I$ is upper bounded by $\sqrt{3(4c^2+1)T}$

Guarantees

regret := hindsight-optimal gain − actual gain of Mill

Theorem

The expected regret after T trials of the GD algorithm with learning rate $\eta = \sqrt{\frac{3/2}{(4c^2+1)T}}$ and initial parameters $\mu_1 = \mathbf{0}$ and $D_1 = \frac{1}{2}\mathbf{I}$ is upper bounded by $\sqrt{3(4c^2+1)T}$

- Regret grows sub-linearly with T
- Mill turned close to the best orientation
- ► Holland is saved ⓒ

Conclusion

- ▶ An efficient method for orienting windmills
- Characterization of set of first two moments of distributions on directions

We can do more

- ▶ Work in $n \ge 3$ dimensions
- ▶ Learn sets of $k \ge 1$ orthogonal directions

