Second-order Quantile Methods

Wouter M. Koolen Tim van Erven

Kyushu University, Monday 3rd October, 2016
Focus on expert setting

Online sequential prediction with expert advice

Core instance of advanced online learning tasks
- Bandits
- Combinatorial & matrix prediction
- Online convex optimization
- Boosting
- ...
Beyond the Worst Case

Two reasons data is often easier in practice:

- Data complexity
 - Stochastic data (gap)
 - Low noise
 - Low variance

- Second-order

- Model complexity
 - Simple model is good
 - Multiple good models

- Quantiles

- Any combination
Beyond the Worst Case

Two reasons data is often *easier* in practice:

<table>
<thead>
<tr>
<th>Data complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>► Stochastic data (gap)</td>
</tr>
<tr>
<td>► Low noise</td>
</tr>
<tr>
<td>► Low variance</td>
</tr>
</tbody>
</table>

Second-order & Quantiles

▶ Any combination
Beyond the Worst Case

Two reasons data is often easier in practice:

<table>
<thead>
<tr>
<th>Data complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Stochastic data (gap)</td>
</tr>
<tr>
<td>▶ Low noise</td>
</tr>
<tr>
<td>▶ Low variance</td>
</tr>
</tbody>
</table>

second-order
Beyond the Worst Case

Two reasons data is often easier in practice:

<table>
<thead>
<tr>
<th>Data complexity</th>
<th>Model complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Stochastic data (gap)</td>
<td>▶ Simple model is good</td>
</tr>
<tr>
<td>▶ Low noise</td>
<td>▶ Multiple good models</td>
</tr>
<tr>
<td>▶ Low variance</td>
<td></td>
</tr>
</tbody>
</table>

second-order
Beyond the Worst Case

Two reasons data is often easier in practice:

<table>
<thead>
<tr>
<th>Data complexity</th>
<th>Model complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stochastic data (gap)</td>
<td>Simple model is good</td>
</tr>
<tr>
<td>Low noise</td>
<td>Multiple good models</td>
</tr>
<tr>
<td>Low variance</td>
<td></td>
</tr>
</tbody>
</table>

- Second-order
- Quantiles
Beyond the Worst Case

Two reasons data is often easier in practice:

Data complexity
- Stochastic data (gap)
- Low noise
- Low variance

Model complexity
- Simple model is good
- Multiple good models

Second-order & Quantiles
- Any combination
All we need is the right learning rate

Existing algorithms
(Hedge, Prod, ...)

with

oracle
learning rate η

exploit

Sec-ord. & Quant.
All we need is the right learning rate

Existing algorithms (Hedge, Prod, . . .) with oracle learning rate η

Can we exploit Second-order & Quantiles on-line?
All we need is the right learning rate

Existing algorithms (Hedge, Prod, ...)

with oracle learning rate η

Can we exploit Second-order & Quantiles on-line?

Can we learn the learning rate?
But everyone struggles with the learning rate

Oracle η

- not monotonic,
- not smooth over time.

State of the art:

or

But everyone struggles with the learning rate

Oracle η

- **not** monotonic,
- **not** smooth over time.

State of the art:

Second-order

or

Quantiles

Main Result

Our new algorithm **Squint** learns the learning rate. It offers

- Run-time of Hedge
- Tiny \((\ln \ln T)\) overhead over oracle learning rate.
- Extension to Combinatorial Games
- Extension to Continuous domains (MetaGrad)
Overview

- Fundamental online learning problem
- Review previous guarantees
- New Squint algorithm with improved guarantees
Fundamental model for learning: Hedge setting

- K experts

In round $t = 1, 2, \ldots$

Learner plays distribution $w^t = (w_1^t, \ldots, w_K^t)$ on experts

Adversary reveals expert losses $\ell^t = (\ell_1^t, \ldots, \ell_K^t) \in [0, 1]^K$

Learner incurs loss $w^t \ell^t$

The goal is to have small regret $R_k^T := T \sum_t w^t \ell^t - T \sum_t \ell_k^t$ with respect to every expert k.
Fundamental model for learning: Hedge setting

- **K** experts

- In round $t = 1, 2, \ldots$
 - Learner plays distribution $\mathbf{w}_t = (w^1_t, \ldots, w^K_t)$ on experts
 - Adversary reveals expert losses $\ell_t = (\ell^1_t, \ldots, \ell^K_t) \in [0, 1]^K$

- Learner incurs loss $\mathbf{w}_t^T \ell_t$
Fundamental model for learning: Hedge setting

- K experts

- In round $t = 1, 2, \ldots$
 - Learner plays distribution $\mathbf{w}_t = (w^1_t, \ldots, w^K_t)$ on experts
 - Adversary reveals expert losses $\mathbf{\ell}_t = (\ell^1_t, \ldots, \ell^K_t) \in [0, 1]^K$

- Learner incurs loss $w^\top_t \ell_t$

- The goal is to have small regret

$$R^k_T := \sum_{t=1}^T w^\top_t \ell_t - \sum_{t=1}^T \ell^k_t$$

with respect to every expert k.
Classic Hedge Result

The **Hedge** algorithm with **learning rate** η

$$w_{t+1}^k := \frac{e^{-\eta L_t^k}}{\sum_k e^{-\eta L_t^k}}$$

where

$$L_t^k = \sum_{s=1}^t \ell_s^k,$$

upon proper tuning of η ensures [Freund and Schapire, 1997] $R_k T \preceq \sqrt{T \ln K}$ for each expert k which is tight for adversarial (worst-case) losses but underwhelming in practice.

Two broad lines of improvement.

- Second-order bounds
- Quantile bounds
Classic Hedge Result

The **Hedge** algorithm with **learning rate** \(\eta \)

\[
w_{t+1}^k := \frac{e^{-\eta L_t^k}}{\sum_k e^{-\eta L_t^k}} \quad \text{where} \quad L_t^k = \sum_{s=1}^t \ell_s^k,
\]

upon proper tuning of \(\eta \) ensures [Freund and Schapire, 1997]

\[
R_k^T \prec \sqrt{T \ln K} \quad \text{for each expert} \ k
\]

which is tight for adversarial (worst-case) losses
Classic Hedge Result

The Hedge algorithm with learning rate η

$$w_{t+1}^k := \frac{e^{-\eta L_t^k}}{\sum_k e^{-\eta L_t^k}}$$

where

$$L_t^k = \sum_{s=1}^t \ell_k^s,$$

upon proper tuning of η ensures [Freund and Schapire, 1997]

$$R_T^k \preceq \sqrt{T \ln K}$$

for each expert k

which is tight for adversarial (worst-case) losses

but underwhelming in practice
Classic Hedge Result

The **Hedge** algorithm with **learning rate** η

$$w_{t+1}^k := \frac{e^{-\eta L_t^k}}{\sum_k e^{-\eta L_t^k}}$$

where

$$L_t^k = \sum_{s=1}^t \ell_s^k,$$

upon proper tuning of η ensures [Freund and Schapire, 1997]

$$R_T^k \prec \sqrt{T \ln K}$$

for each expert k

which is tight for adversarial (worst-case) losses

but **underwhelming** in practice

Two broad lines of improvement.
The **Hedge** algorithm with learning rate η

\[
 w_{t+1}^k := \frac{e^{-\eta L_t^k}}{\sum_k e^{-\eta L_t^k}} \quad \text{where} \quad L_t^k = \sum_{s=1}^{t} \ell_s^k,
\]

upon proper tuning of η ensures [Freund and Schapire, 1997]

\[
 R_T^k \prec \sqrt{T \ln K} \quad \text{for each expert } k
\]

which is tight for adversarial (worst-case) losses

but **underwhelming** in practice

Two broad lines of improvement.

- Second-order bounds
- Quantile bounds
Cesa-Bianchi et al. [2007], Hazan and Kale [2010], Chiang et al. [2012], De Rooij et al. [2014], Gaillard et al. [2014], Steinhardt and Liang [2014]

\[
R_T^k \prec \sqrt{V_T^k \ln K} \quad \text{for each expert } k.
\]

for some second-order quantity \(V_T^k \leq L_T^k \leq T \).
Second-order bounds

Cesa-Bianchi et al. [2007], Hazan and Kale [2010], Chiang et al. [2012], De Rooij et al. [2014], Gaillard et al. [2014], Steinhardt and Liang [2014]

\[R_T^k < \sqrt{V_T^k \ln K} \quad \text{for each expert } k. \]

for some second-order quantity \(V_T^k \leq L_T^k \leq T \).

- Pro: stochastic case, learning sub-algorithms
- Con: specialized algorithms. hard-coded \(K \).
Quantile bounds

Hutter and Poland [2005], Chaudhuri et al. [2009], Chernov and Vovk [2010], Luo and Schapire [2014]

Prior π on experts:

$$\min_{k \in \mathcal{K}} R_T^k \prec \sqrt{T \left(-\ln \pi(\mathcal{K}) \right)}$$

for each subset \mathcal{K} of experts
Quantile bounds

Hutter and Poland [2005], Chaudhuri et al. [2009], Chernov and Vovk [2010], Luo and Schapire [2014]

Prior π on experts:

$$\min_{k \in \mathcal{K}} R_T^k < \sqrt{T \left(-\ln \pi(\mathcal{K}) \right)} \quad \text{for each subset } \mathcal{K} \text{ of experts}$$

- **Pro**: over-discretized models, company baseline
- **Con**: specialized algorithms. Efficiency. Inescapable T.
Our contribution

Squint [Koolen and Van Erven, 2015] guarantees

\[R^K_T \prec \sqrt{V^K_T \left(-\ln \pi(K) + C_T \right)} \]

for each subset \(K \) of experts where

\[R^K_T = \mathbb{E}_{\pi(k|K)} R^k_T \]

and

\[V^K_T = \mathbb{E}_{\pi(k|K)} V^k_T \]

denote the average (under the prior \(\pi \)) among the reference experts \(k \in K \) of the regret \(R^k_T = \sum_{t=1}^{T} r^k_t \) and the (uncentered) variance of the excess losses \(V^k_T = \sum_{t=1}^{T} (r^k_t)^2 \) (where \(r^k_t = (w_t - e_k)^T \ell_t \)).
The cool . . .

- Squint aggregates over **all** learning rates
- While staying as efficient as Hedge
Fix prior $\pi(k)$ on experts and $\gamma(\eta)$ on learning rates $\eta \in [0, 1/2]$.
Fix prior $\pi(k)$ on experts and $\gamma(\eta)$ on learning rates $\eta \in [0, 1/2]$.

Potential function

$$\Phi_T := \mathbb{E}_{\pi(k)\gamma(\eta)} \left[e^{\eta R_k^T - \eta^2 V_k^T} \right],$$
Fix prior \(\pi(k) \) on experts and \(\gamma(\eta) \) on learning rates \(\eta \in [0, 1/2] \).

Potential function

\[
\Phi_T := \mathbb{E}_{\pi(k)\gamma(\eta)} \left[e^{\eta R^k_T - \eta^2 V^k_T} \right],
\]

Weights

\[
w^k_{T+1} := \frac{\pi(k) \mathbb{E}_{\gamma(\eta)} \left[e^{\eta R^k_T - \eta^2 V^k_T} \right]}{\text{normalisation}}.
\]
Fix prior $\pi(k)$ on experts and $\gamma(\eta)$ on learning rates $\eta \in [0, 1/2]$.

Potential function

$$\Phi_T := \mathbb{E}_{\pi(k)\gamma(\eta)} \left[e^{\eta R^k_T - \eta^2 V^k_T} \right],$$

Weights

$$w^k_{T+1} := \frac{\pi(k) \mathbb{E}_{\gamma(\eta)} \left[e^{\eta R^k_T - \eta^2 V^k_T} \right]}{\text{normalisation}}.$$

Next:

- Argue weights ensure $1 = \Phi_0 \geq \Phi_1 \geq \Phi_2 \geq \cdots$.
- Derive second-order quantile bound from $\Phi_T \leq 1$.
Squint Analysis: Potential Decreases

Theorem

Squint ensures: \(1 = \Phi_0 \geq \Phi_1 \geq \Phi_2 \geq \cdots \)

Proof.

Let \(f_{T}^{k,\eta} := e^{\eta R_{T}^{k}} - \eta^2 V_{T}^{k} \) so that \(\Phi_{T} = \mathbb{E}_{\pi(k)\gamma(\eta)} \left[f_{T}^{k,\eta} \right] \).
Squint Analysis: Potential Decreases

Theorem

Squint ensures: \(1 = \Phi_0 \geq \Phi_1 \geq \Phi_2 \geq \cdots \)

Proof.

Let \(f_{T}^{k,\eta} := e^{\eta R_{T}^{k} - \eta^2 V_{T}^{k}} \) so that \(\Phi_{T} = \mathbb{E}_{\pi(k)\gamma(\eta)} \left[f_{T}^{k,\eta} \right] \). Then

\[
\Phi_{T+1} = \mathbb{E}_{\pi(k)\gamma(\eta)} \left[f_{T+1}^{k,\eta} \right] = \mathbb{E}_{\pi(k)\gamma(\eta)} \left[f_{T}^{k,\eta} e^{\eta r_{T+1}^{k} - (\eta r_{T+1}^{k})^2} \right] \\
\leq \mathbb{E}_{\pi(k)\gamma(\eta)} \left[f_{T}^{k,\eta} (1 + \eta r_{T+1}^{k}) \right] \\
= \Phi_{T} + \mathbb{E}_{\pi(k)\gamma(\eta)} \left[f_{T}^{k,\eta} (w_{T+1} - e_k) \right]^T \ell_{T+1}
\]
Squint Analysis: Potential Decreases

Theorem

Squint ensures: $1 = \Phi_0 \geq \Phi_1 \geq \Phi_2 \geq \cdots$

Proof.

Let $f_{T}^{k,\eta} := e^{\eta R_{T}^{k} - \eta^2 V_{T}^{k}}$ so that $\Phi_T = \mathbb{E}_{\pi(k)\gamma(\eta)} \left[f_{T}^{k,\eta}\right]$. Then

$$
\Phi_{T+1} = \mathbb{E}_{\pi(k)\gamma(\eta)} \left[f_{T+1}^{k,\eta}\right] = \mathbb{E}_{\pi(k)\gamma(\eta)} \left[f_{T}^{k,\eta} e^{\eta r_{T+1}^k - (\eta r_{T+1}^k)^2}\right]
$$

$$
\leq \mathbb{E}_{\pi(k)\gamma(\eta)} \left[f_{T}^{k,\eta}(1 + \eta r_{T+1}^k)\right]
$$

$$
= \Phi_T + \mathbb{E}_{\pi(k)\gamma(\eta)} \left[f_{T}^{k,\eta}(w_{T+1} - e_k)\right]^{T} \ell_{T+1}
$$

and the weights $w_{T+1} \propto \mathbb{E}_{\pi(k)\gamma(\eta)} \left[f_{T}^{k,\eta} e_k\right]$ ensure

$$
\mathbb{E}_{\pi(k)\gamma(\eta)} \left[f_{T}^{k,\eta}(w_{T+1} - e_k)\right] = \mathbb{E}_{\pi(k)\gamma(\eta)} \left[f_{T}^{k,\eta}\right] w_{T+1} - \mathbb{E}_{\pi(k)\gamma(\eta)} \left[f_{T}^{k,\eta} e_k\right] = 0.
$$
Squint Analysis: Regret Bound

We have $1 \geq \Phi_T$. So for any k and η

\[
0 \geq \ln \Phi_T = \ln \mathbb{E}_{\pi(k)\gamma(\eta)} \left[e^{\eta R^k_T - \eta^2 V^k_T} \right] \\
\geq \ln \left(\pi(k)\gamma(\eta)e^{\eta R^k_T - \eta^2 V^k_T} \right) \\
= \ln \pi(k) + \ln \gamma(\eta) + \eta R^k_T - \eta^2 V^k_T
\]
Squint Analysis: Regret Bound

We have $1 \geq \Phi_T$. So for any k and η

$$0 \geq \ln \Phi_T = \ln \mathbb{E}_{\pi(k)\gamma(\eta)} \left[e^{\eta R_T^k - \eta^2 V_T^k} \right]$$

$$\geq \ln \left(\pi(k)\gamma(\eta)e^{\eta R_T^k - \eta^2 V_T^k} \right)$$

$$= \ln \pi(k) + \ln \gamma(\eta) + \eta R_T^k - \eta^2 V_T^k$$

Now $\max_{\eta} \left\{ \eta R_T^k - \eta^2 V_T^k \right\} = \frac{(R_T^k)^2}{4V_T^k}$ at $\hat{\eta} = \frac{R_T^k}{2V_T^k}$ and hence

$$\frac{(R_T^k)^2}{4V_T^k} \leq - \ln \pi(k) - \ln \gamma(\hat{\eta}),$$
Squint Analysis: Regret Bound

We have $1 \geq \Phi_T$. So for any k and η

$$0 \geq \ln \Phi_T = \ln \mathbb{E}_{\pi(k)\gamma(\eta)} \left[e^{\eta R^k_T - \eta^2 V^k_T} \right]$$

$$\geq \ln \left(\pi(k) \gamma(\eta) e^{\eta R^k_T - \eta^2 V^k_T} \right)$$

$$= \ln \pi(k) + \ln \gamma(\eta) + \eta R^k_T - \eta^2 V^k_T$$

Now $\max_\eta \left\{ \eta R^k_T - \eta^2 V^k_T \right\} = \frac{(R^k_T)^2}{4 V^k_T}$ at $\hat{\eta} = \frac{R^k_T}{2 V^k_T}$ and hence

$$\frac{(R^k_T)^2}{4 V^k_T} \leq - \ln \pi(k) - \ln \gamma(\hat{\eta})$$

so

$$R^k_T \leq 2 \sqrt{V^k_T \left(- \ln \pi(k) - \ln \gamma(\hat{\eta}) \right)} \quad \text{for all } k.$$
Three priors

Idea: have prior $\gamma(\eta)$ put sufficient mass around optimal $\hat{\eta}$
Three priors

Idea: have prior $\gamma(\eta)$ put sufficient mass around optimal $\hat{\eta}$

1. Uniform prior (generalizes to conjugate)

 $\gamma(\eta) = 2$

 Efficient algorithm, $C_T = \ln V_T^K$.
Three priors

Idea: have prior $\gamma(\eta)$ put sufficient mass around optimal $\hat{\eta}$

1. Uniform prior (generalizes to conjugate)

$$\gamma(\eta) = 2$$

Efficient algorithm, $C_T = \ln V_T^K$.

2. Chernov and Vovk [2010] prior

$$\gamma(\eta) = \frac{\ln 2}{\eta \ln^2(\eta)}$$

Not efficient, $C_T = \ln \ln V_T^K$.

Three priors

Idea: have prior $\gamma(\eta)$ put sufficient mass around optimal $\hat{\eta}$

1. Uniform prior (generalizes to conjugate)

$$\gamma(\eta) = 2$$

Efficient algorithm, $C_T = \ln V_T^K$.

2. Chernov and Vovk [2010] prior

$$\gamma(\eta) = \frac{\ln 2}{\eta \ln^2(\eta)}$$

Not efficient, $C_T = \ln \ln V_T^K$.

3. Improper(!) log-uniform prior

$$\gamma(\eta) = \frac{1}{\eta}$$

Efficient algorithm, $C_T = \ln \ln T$
Implementation of Squint w. log-uniform prior

Closed-form expression for weights:

$$w^k_{T+1} \propto \pi(k) \int_0^{1/2} e^{\eta R^k_T - \eta^2 V^k_T} \frac{1}{\eta} d\eta$$

$$\propto \pi(k) e^{\frac{(R^k_T)^2}{4V^k_T}} \frac{\text{erf} \left(\frac{R^k_T}{2\sqrt{V^k_T}} \right) - \text{erf} \left(\frac{R^k_T - V^k_T}{2\sqrt{V^k_T}} \right)}{\sqrt{V^k_T}}.$$

Note: erf part of e.g. C99 standard.
Constant time per expert per round
Extensions I

Combinatorial concept class $C \subseteq \{0, 1\}^K$:

- Shortest path
- Spanning trees
- Permutations
- ...

Component iProd [Koolen and Van Erven, 2015] guarantees:

$$R_u T \preceq \sqrt{V_u T (\text{comp}(u) + K C_T)}$$

for each $u \in \text{conv}(C)$. The reference set of experts K is subsumed by an "average concept" vector $u \in \text{conv}(C)$, for which our bound relates the coordinate-wise average regret $R_u T = \sum_t, k u_k r_k t$ to the averaged variance $V_u T = \sum_t, k u_k (r_k t)^2$ and the prior entropy $\text{comp}(u)$. No range factor. Drop-in replacement for Component Hedge [Koolen, Warmuth, and Kivinen, 2010].
Extensions I

Combinatorial concept class $\mathcal{C} \subseteq \{0, 1\}^K$:

- Shortest path
- Spanning trees
- Permutations
- . . .

Component iProd [Koolen and Van Erven, 2015] guarantees:

$$R_T^u \prec \sqrt{V_T^u (\text{comp}(u) + KC_T)}$$

for each $u \in \text{conv}(\mathcal{C})$.

The reference set of experts \mathcal{K} is subsumed by an “average concept” vector $u \in \text{conv}(\mathcal{C})$, for which our bound relates the coordinate-wise average regret $R_T^u = \sum_{t,k} u_k r_t^k$ to the averaged variance $V_T^u = \sum_{t,k} u_k (r_t^k)^2$ and the prior entropy $\text{comp}(u)$.
Extensions I

Combinatorial concept class $C \subseteq \{0, 1\}^K$:
- Shortest path
- Spanning trees
- Permutations
- ...

Component iProd [Koolen and Van Erven, 2015] guarantees:

$$R_T^u \prec \sqrt{V_T^u (\text{comp}(u) + KC_T)}$$
for each $u \in \text{conv}(C)$.

The reference set of experts \mathcal{K} is subsumed by an “average concept” vector $u \in \text{conv}(C)$, for which our bound relates the coordinate-wise average regret $R_T^u = \sum_{t,k} u_k r_t^k$ to the averaged variance $V_T^u = \sum_{t,k} u_k (r_t^k)^2$ and the prior entropy $\text{comp}(u)$.

No range factor. Drop-in replacement for Component Hedge

[Koolen, Warmuth, and Kivinen, 2010]
Extensions II

Setup generalized to

- Continuous (bounded) domain $U \subseteq \mathbb{R}^d$
- Convex loss functions $f_t : U \rightarrow \mathbb{R}$

Includes:

- Previous settings (linear)
- Online convex optimization

MetaGrad \cite{Van Erven and Koolen, 2016} guarantees:

$$R_u T \preceq \sqrt{V_u T \ln T}$$

for each $u \in U$.

- Weights become Gaussians.
- Run-time $O(d^2)$ per round (like Online Newton Step).
Extensions II

Setup generalized to

- Continuous (bounded) domain $\mathcal{U} \subseteq \mathbb{R}^d$
- Convex loss functions $f_t : \mathcal{U} \to \mathbb{R}$

Includes:

- Previous settings (linear)
- Online convex optimization

MetaGrad [Van Erven and Koolen, 2016] guarantees:

$$R^u_T \prec \sqrt{V^u_T \ln T}$$

for each $u \in \mathcal{U}$.

Weights become Gaussians.

Run-time $O(d^2)$ per round (like Online Newton Step).
Extensions II

Setup generalized to

- Continuous (bounded) domain $\mathcal{U} \subseteq \mathbb{R}^d$
- Convex loss functions $f_t : \mathcal{U} \rightarrow \mathbb{R}$

Includes:

- Previous settings (linear)
- Online convex optimization

MetaGrad [Van Erven and Koolen, 2016] guarantees:

$$R_T^u \prec \sqrt{V_T^u d \ln T} \quad \text{for each } u \in \mathcal{U}.$$

- Weights become Gaussians.
- Run-time $O(d^2)$ per round (like Online Newton Step).
Central idea: **learning the learning rate**

A new set of tools
- fresh
- different
- efficient

for the well-studied experts problem.

Powerful generalizations to more complex problems.
Thank you!