Quarto!

Wouter M. Koolen

Cakes Talk
Thursday 29th September, 2011

Goals of this talk

- Become a departmental celebrity.
- Serve Dutch streopwafels Belgian cookies.
- Popularise Quarto!
- Legitimise hobby project.
- Fun and empowering toolbox:
- Combinatorial game theory
- Academic programming
- Nice example of brain vs computational power:
- Thought-assisted combinatorial search
- Combinatorial-search-assisted thought
- Fascinating symmetries

Goals of this talk

- Become a departmental celebrity. Success!
- Serve Dutch streopwafels Belgian cookies. Success!
- Popularise Quarto!
- Legitimise hobby project.
- Fun and empowering toolbox:
- Combinatorial game theory
- Academic programming
- Nice example of brain vs computational power:
- Thought-assisted combinatorial search
- Combinatorial-search-assisted thought
- Fascinating symmetries

Outline

(1) Quarto crash course

(2) The value of Quarto

3 Playing Optimally

Rules: the pieces and Quarto

- The pieces are the 16 realisations of four binary properties:

- Four pieces form Quarto if they agree on a property.

$$
Q\{p, q, r, s\} \quad \text { iff } \quad p_{i}=q_{i}=r_{i}=s_{i} \quad \text { for some property } i
$$

Rules: the pieces and Quarto

- The pieces are the 16 realisations of four binary properties:

- Four pieces form Quarto if they agree on a property.

$$
Q\{p, q, r, s\} \quad \text { iff } \quad p_{i}=q_{i}=r_{i}=s_{i} \quad \text { for some property } i
$$

Rules: the pieces and Quarto

- The pieces are the 16 realisations of four binary properties:

- Four pieces form Quarto if they agree on a property.

$$
Q\{p, q, r, s\} \quad \text { iff } \quad p_{i}=q_{i}=r_{i}=s_{i} \quad \text { for some property } i
$$

Rules: the pieces and Quarto

- The pieces are the 16 realisations of four binary properties:

- Four pieces form Quarto if they agree on a property.

$$
Q\{p, q, r, s\} \quad \text { iff } \quad p_{i}=q_{i}=r_{i}=s_{i} \quad \text { for some property } i
$$

Rules: board, turns and winning

- The board has 4×4 cells. Initially empty. Pieces are put aside.
- The game proceeds in rounds. Each round has two plies:
- One player gives an unused piece to the other player.
- The other player places that piece on an empty cell.

- Win by forming Quarto in a row, column or (co)diagonal.
- Draw when all pieces placed without Quarto.

Questions

- What is the value of the game? (i.e. when both players play optimally, does the starting player win, lose or draw?)
- How to play the optimal strategy?

Outline

(1) Quarto crash course
(2) The value of Quarto

3 Playing Optimally

Naive approach

$$
\max _{p_{1}} \min _{c_{1}} \min _{p_{2}} \max _{c_{2}} \max _{p_{3}} \ldots \min _{p_{16}} \max _{c_{16}} V\left(p_{1} c_{1} \cdots p_{16} c_{16}\right)
$$

where

$$
V\left(p_{1} c_{1} \cdots p_{16} c_{16}\right)= \begin{cases}-\infty & \text { You disobeyed the rules } \\ -1 & \text { You lose } \\ 0 & \text { Game is a draw } \\ +1 & \text { You win } \\ +\infty & \text { Opp disobeyed the rules }\end{cases}
$$

Only $16^{32} \approx 3.4 \cdot 10^{38}$ operations.

Naive approach

$$
\max _{p_{1}} \min _{c_{1}} \min _{p_{2}} \max _{c_{2}} \max _{p_{3}} \ldots \min _{p_{16}} \max _{c_{16}} V\left(p_{1} c_{1} \cdots p_{16} c_{16}\right)
$$

where

$$
V\left(p_{1} c_{1} \cdots p_{16} c_{16}\right)= \begin{cases}-\infty & \text { You disobeyed the rules } \\ -1 & \text { You lose } \\ 0 & \text { Game is a draw } \\ +1 & \text { You win } \\ +\infty & \text { Opp disobeyed the rules }\end{cases}
$$

Only $16^{32} \approx 3.4 \cdot 10^{38}$ operations.
Only $(16!)^{2} \approx 4.4 \cdot 10^{26}$ when enforcing the rules.

Naive approach

$$
\max _{p_{1}} \min _{c_{1}} \min _{p_{2}} \max _{c_{2}} \max _{p_{3}} \ldots \min _{p_{16}} \max _{c_{16}} V\left(p_{1} c_{1} \cdots p_{16} c_{16}\right)
$$

where

$$
V\left(p_{1} c_{1} \cdots p_{16} c_{16}\right)= \begin{cases}-\infty & \text { You disobeyed the rules } \\ -1 & \text { You lose } \\ 0 & \text { Game is a draw } \\ +1 & \text { You win } \\ +\infty & \text { Opp disobeyed the rules }\end{cases}
$$

Only $16^{32} \approx 3.4 \cdot 10^{38}$ operations.
Only $(16!)^{2} \approx 4.4 \cdot 10^{26}$ when enforcing the rules.
Way too many.

Naive approach

$$
\max _{p_{1}} \min _{c_{1}} \min _{p_{2}} \max _{c_{2}} \max _{p_{3}} \ldots \min _{p_{16}} \max _{c_{16}} V\left(p_{1} c_{1} \cdots p_{16} c_{16}\right)
$$

where

$$
V\left(p_{1} c_{1} \cdots p_{16} c_{16}\right)= \begin{cases}-\infty & \text { You disobeyed the rules } \\ -1 & \text { You lose } \\ 0 & \text { Game is a draw } \\ +1 & \text { You win } \\ +\infty & \text { Opp disobeyed the rules }\end{cases}
$$

Only $16^{32} \approx 3.4 \cdot 10^{38}$ operations.
Only $(16!)^{2} \approx 4.4 \cdot 10^{26}$ when enforcing the rules.
Way too many. Q: Any ideas?

Exploiting positionality

In Quarto, the moves from and payoffs in any state depend only on the current position, and not on how the players got there.

```
1: function \(\operatorname{VAL}(b)\)
2: if ISQ \((b)\) return WIN
3: if \(\operatorname{ISFULL}(b)\) return DRAW
4: if we stored that \(b\) has value \(v\) then return \(v\)
5: if \(b\) has given piece \(p\) then
6: \(\quad v \leftarrow \max _{c \in c e l l s(b)} \operatorname{VAL}(b[p @ c])\)
7: else
8: \(\quad v \leftarrow \max _{p \in \text { pieces }(b)}-\operatorname{VAL}(b \oplus p)\)
9: end if
10: \(\quad\) store that \(b\) has value \(v\)
11: return \(v\)
12: end function
```

We now need $9.9 \cdot 10^{16}$ operations. Still no cigar.

Exploiting symmetries

Some positions are equivalent. It suffices to evaluate only one member of each equivalence class.

- Piece symmetries
- Board symmetries

Piece symmetries

Definition (Piece Symmetry)

A piece symmetry is a mapping of the 16 pieces to the 16 pieces that preserves Quarto's.

Piece symmetries

Definition (Piece Symmetry)

A piece symmetry is a mapping of the 16 pieces to the 16 pieces that preserves Quarto's.

Q: Find piece symmetries

Piece symmetries

Definition (Piece Symmetry)

A piece symmetry is a mapping of the 16 pieces to the 16 pieces that preserves Quarto's.

Q: Find piece symmetries

Fact

There are $4!2^{4}=384$ piece symmetries.

- the 4 properties can be reordered arbitrarily
- the 2 values of each property can be flipped

Board s

Definition (Board Symmetry)

A board symmetry is a mapping of the 16 board cells to the 16 board cells that preserves Quarto's.

A board symmetry must map rows/columns to rows/columns and (co)diagonals to (co)diagonals.

Board s

Definition (Board Symmetry)

A board symmetry is a mapping of the 16 board cells to the 16 board cells that preserves Quarto's.

A board symmetry must map rows/columns to rows/columns and (co)diagonals to (co)diagonals.

Q: Find board symmetries

Finding board symmetries

counter clockwise rotation

Finding board symmetries

Q: What about clockwise rotation?

Finding board symmetries

counter clockwise rotation

Q: What about clockwise rotation? A: Rotate ccw thrice

Finding board symmetries

counter clockwise rotation

mirror over vertical axis

Q: What about clockwise rotation? A: Rotate ccw thrice

Finding board symmetries

counter clockwise rotation

mirror over vertical axis

Q: What about clockwise rotation? A: Rotate ccw thrice Q: Mirror over diagonal?

Finding board symmetries

counter clockwise rotation

mirror over vertical axis

Q: What about clockwise rotation? A: Rotate ccw thrice
Q: Mirror over diagonal? A: rotate cw , then mirror

Finding board symmetries

counter clockwise rotation

mirror over vertical axis

Q: What about clockwise rotation? A: Rotate ccw thrice
Q: Mirror over diagonal? A: rotate cw, then mirror
Q: Are there other board symmetries?

Finding board symmetries

counter clockwise rotation

mirror over vertical axis

Q: What about clockwise rotation? A: Rotate ccw thrice
Q: Mirror over diagonal? A: rotate cw, then mirror
Q: Are there other board symmetries?
Q: How to even approach such a question?

Exhaustive enumeration

```
1: procedure ENUM_SYM(M)
    2: if M violates group structure then return
3: if }|M|=16\mathrm{ then
4: print M
5: else
6: choose a free source cell }
        for each free target cell }j\mathrm{ do
                ENUM_SYM(M[i->j])
            end for
10: end if
11: end procedure
```


Exhaustive enumeration

```
1: procedure ENUM_SYm(M)
    if M}\mathrm{ violates group structure then return
    if }|M|=16\mathrm{ then
            print M
        else
        choose a free source cell i
        for each free target cell j do
                ENUm_SYm(M[i->j])
            end for
10: end if
11: end procedure
```


Fact

There are 32 board symmetries.

Finding board symmetries (ctd)

Finding board symmetries (ctd)

Finding board symmetries (ctd)

[Goo04] found 16 (inside out), and [Bro05] found 16(mid flip).

Symmetry benefits

Identifying d positions may divide the degree by d. Exponential gain.

Symmetry benefits

Identifying d positions may divide the degree by d. Exponential gain.

Q: Will it always? If not, what is the least-favourable reduction?

Symmetry benefits ctd.

Good, but we need to explore 32 plies!

How to exploit symmetries

CANONISE picks a canonical representative of each equivalence class.

```
    1: function VAL(b)
    2: if ISQ(b) return WIN
    3: if ISFULL(b) return DRAW
    4:}\quadb\leftarrow\mathrm{ CANONISE( }b
    5: if we stored that b}\mathrm{ has value v then return v
    6: if b}\mathrm{ has given piece p then
    7:
    8: else
    9:
10: end if
11: store that }b\mathrm{ has value }
12: return v
13: end function
```


The final trick

Alpha-beta pruning. Rule of thumb: explores only the square root of the original number of positions.

The final trick

Alpha-beta pruning. Rule of thumb: explores only the square root of the original number of positions.

Fact

The value of Quarto is draw.
Software finds out in 147 minutes on this laptop.

Outline

(1) Quarto crash course

(2) The value of Quarto

(3) Playing Optimally

Implementing the optimal strategy

- So far, we computed the value of the empty board.
- But to play, we need to evaluate any board.
- We can evaluate positions at ≥ 10 plies from scratch in <5 seconds.
- There are only 106156 distinct positions at <10 plies.
- Compute, once and for all, the value of all of them.
- Took about 2 weeks on this laptop.
- Now we can evaluate any position fast.
- To play, choose the child that evaluates to the value of the parent.

Kevin S. Brown.
414298141056 quarto draws suffice!
http://www.mathpages.com/home/kmath352.htm, June 2005.
居 Luc Goossens.
Quarto.
http://web.archive.org/web/20041012023358/http://ssel.
vub.ac.be/Members/LucGoossens/quarto/quartotext.htm, October 2004.

