Quarto!

Wouter M. Koolen

Cakes Talk Thursday 29th September, 2011

- Become a departmental celebrity.
- Serve Dutch stroopwafels Belgian cookies.
- Popularise *Quarto!*
- Legitimise hobby project.
- Fun and empowering toolbox:
 - Combinatorial game theory
 - Academic programming
- Nice example of brain vs computational power:
 - Thought-assisted combinatorial search
 - Combinatorial-search-assisted thought
- Fascinating symmetries

- Become a departmental celebrity. Success!
- Serve Dutch stroopwafels Belgian cookies. Success!
- Popularise *Quarto!*
- Legitimise hobby project.
- Fun and empowering toolbox:
 - Combinatorial game theory
 - Academic programming
- Nice example of brain vs computational power:
 - Thought-assisted combinatorial search
 - Combinatorial-search-assisted thought
- Fascinating symmetries

Quarto crash course

2 The value of Quarto

3 Playing Optimally

< 一型

- ₹ 🕨 🕨

• The **pieces** are the 16 realisations of four binary properties:

Four pieces form Quarto if they agree on a property.

 $Q\{p, q, r, s\}$ iff $p_i = q_i = r_i = s_i$ for some property i

• The pieces are the 16 realisations of four binary properties:

 $Q\{p, q, r, s\}$ iff $p_i = q_i = r_i = s_i$ for some property i

Image: Image:

• The pieces are the 16 realisations of four binary properties:

Four pieces form Quarto if they agree on a property.

 $Q\{p, q, r, s\}$ iff $p_i = q_i = r_i = s_i$ for some property i

• The pieces are the 16 realisations of four binary properties:

Four pieces form Quarto if they agree on a property.

 $Q\{p, q, r, s\}$ iff $p_i = q_i = r_i = s_i$ for some property i

Image: Image:

Rules: board, turns and winning

- The **board** has 4×4 cells. Initially empty. Pieces are put aside.
- The game proceeds in rounds. Each round has two plies:
 - One player gives an unused piece to the other player.
 - The other player places that piece on an empty cell.

- Win by forming Quarto in a row, column or (co)diagonal.
- Draw when all pieces placed without Quarto.

- What is the *value of the game*? (i.e. when both players play optimally, does the starting player win, lose or draw?)
- How to play the optimal strategy?

2 The value of Quarto

< 一型

- ₹ 🗦 🕨

where

$$V(p_1c_1\cdots p_{16}c_{16}) = \begin{cases} -\infty & \text{You disobeyed the rules} \\ -1 & \text{You lose} \\ 0 & \text{Game is a draw} \\ +1 & \text{You win} \\ +\infty & \text{Opp disobeyed the rules} \end{cases}$$

Only $16^{32}\approx 3.4\cdot 10^{38}$ operations.

3 1 4

where

$$V(p_1c_1\cdots p_{16}c_{16}) = \begin{cases} -\infty & \text{You disobeyed the rules} \\ -1 & \text{You lose} \\ 0 & \text{Game is a draw} \\ +1 & \text{You win} \\ +\infty & \text{Opp disobeyed the rules} \end{cases}$$

Only $16^{32}\approx 3.4\cdot 10^{38}$ operations. Only $(16!)^2\approx 4.4\cdot 10^{26}$ when enforcing the rules.

where

$$V(p_1c_1\cdots p_{16}c_{16}) = \begin{cases} -\infty & \text{You disobeyed the rules} \\ -1 & \text{You lose} \\ 0 & \text{Game is a draw} \\ +1 & \text{You win} \\ +\infty & \text{Opp disobeyed the rules} \end{cases}$$

Only $16^{32} \approx 3.4 \cdot 10^{38}$ operations. Only $(16!)^2 \approx 4.4 \cdot 10^{26}$ when enforcing the rules. Way too many.

∃ ▶ ∢

where

$$V(p_1c_1\cdots p_{16}c_{16}) = \begin{cases} -\infty & \text{You disobeyed the rules} \\ -1 & \text{You lose} \\ 0 & \text{Game is a draw} \\ +1 & \text{You win} \\ +\infty & \text{Opp disobeyed the rules} \end{cases}$$

Only $16^{32} \approx 3.4 \cdot 10^{38}$ operations. Only $(16!)^2 \approx 4.4 \cdot 10^{26}$ when enforcing the rules. Way too many. Q: Any ideas?

Exploiting positionality

In Quarto, the moves from and payoffs in any state depend only on the current position, and not on how the players got there.

We now need $9.9 \cdot 10^{16}$ operations. Still no cigar.

Koolen ()

Some positions are *equivalent*. It suffices to evaluate only one member of each equivalence class.

- Piece symmetries
- Board symmetries

Definition (Piece Symmetry)

A *piece symmetry* is a mapping of the 16 pieces to the 16 pieces that preserves Quarto's.

Definition (Piece Symmetry)

A *piece symmetry* is a mapping of the 16 pieces to the 16 pieces that preserves Quarto's.

Q: Find piece symmetries

Definition (Piece Symmetry)

A *piece symmetry* is a mapping of the 16 pieces to the 16 pieces that preserves Quarto's.

Q: Find piece symmetries

Fact

There are $4! 2^4 = 384$ piece symmetries.

- the 4 properties can be reordered arbitrarily
- the 2 values of each property can be flipped

Definition (Board Symmetry)

A *board symmetry* is a mapping of the 16 board cells to the 16 board cells that preserves Quarto's.

A board symmetry must map rows/columns to rows/columns and (co)diagonals to (co)diagonals.

Definition (Board Symmetry)

A *board symmetry* is a mapping of the 16 board cells to the 16 board cells that preserves Quarto's.

A board symmetry must map rows/columns to rows/columns and (co)diagonals to (co)diagonals.

Q: Find board symmetries

counter clockwise rotation

3 ×

counter clockwise rotation

Q: What about clockwise rotation?

counter clockwise rotation

Q: What about clockwise rotation? A: Rotate ccw thrice

counter clockwise rotation

mirror over vertical axis

Q: What about clockwise rotation? A: Rotate ccw thrice

counter clockwise rotation

mirror over vertical axis

Q: What about clockwise rotation? A: Rotate ccw thrice Q: Mirror over diagonal?

mirror over vertical axis

Q: What about clockwise rotation? A: Rotate ccw thrice Q: Mirror over diagonal? A: rotate cw, then mirror

counter clockwise rotation

mirror over vertical axis

Q: What about clockwise rotation? A: Rotate ccw thrice Q: Mirror over diagonal? A: rotate cw, then mirror Q: Are there other board symmetries?

counter clockwise rotation

mirror over vertical axis

Q: What about clockwise rotation? A: Rotate ccw thriceQ: Mirror over diagonal? A: rotate cw, then mirrorQ: Are there other board symmetries?Q: How to even approach such a question?

1: procedure ENUM_SYM(M)		
2:	if M violates group structure then return	
3:	if $ M = 16$ then	
4:	print M	
5:	else	
6:	choose a free source cell <i>i</i>	
7:	for each free target cell j do	
8:	$\texttt{ENUM_SYM}(M[i \rightarrow j])$	
9:	end for	
10:	end if	
11: end procedure		

1: procedure ENUM_SYM(<i>M</i>)		
2:	if M violates group structure then return	
3:	if $ M = 16$ then	
4:	print M	
5:	else	
6:	choose a free source cell <i>i</i>	
7:	for each free target cell j do	
8:	ENUM_SYM $(M[i \rightarrow j])$	
9:	end for	
10:	end if	
11:	end procedure	

Fact

There are 32 board symmetries.

Koolen ()

Finding board symmetries (ctd)

mid flip

Image: A matrix

Finding board symmetries (ctd)

mid flip

inside out

Finding board symmetries (ctd)

[Goo04] found 16 (inside out), and [Bro05] found 16(mid flip).

Identifying d positions may *divide* the degree by d. Exponential gain.

Identifying d positions may *divide* the degree by d. Exponential gain.

Q: Will it always? If not, what is the least-favourable reduction?

Symmetry benefits ctd.

Good, but we need to explore 32 plies!

Cakes 2011 17 / 21

CANONISE picks a canonical representative of each equivalence class.

Alpha-beta pruning. Rule of thumb: explores only the square root of the original number of positions.

Alpha-beta pruning. Rule of thumb: explores only the square root of the original number of positions.

Fact

The value of Quarto is draw.

Software finds out in 147 minutes on this laptop.

Quarto crash course

2 The value of Quarto

æ

- So far, we computed the value of the empty board.
- But to play, we need to evaluate any board.
- We can evaluate positions at \geq 10 plies from scratch in < 5 seconds.
- There are only 106156 distinct positions at < 10 plies.
- Compute, once and for all, the value of *all of them*.
- Took about 2 weeks on this laptop.
- Now we can evaluate any position fast.
- To play, choose the child that evaluates to the value of the parent.

Kevin S. Brown.

414298141056 quarto draws suffice!

http://www.mathpages.com/home/kmath352.htm, June 2005.

Luc Goossens.

Quarto.

http://web.archive.org/web/20041012023358/http://ssel. vub.ac.be/Members/LucGoossens/quarto/quartotext.htm, October 2004.