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Previous work: policy regret

Compete with policy for choosing alternatives to blocked paths. . .
I In fully adversarial setting it is computationally hard already

for experts [Kanade and Steinke, 2014]:

A B

I If sabotages are stochastic and losses are decoupled from
them, then efficient algorithms exist [Neu and Valko, 2014]



Proposed notion of regret

We seek a natural notion of regret that avoids the hardness.

Get back to basics and compete with the path only on the rounds
when it is awake.

Regret(Path) =
∑

rounds when path
is awake

(
loss(Learner)− loss(Path)

)

Time



The Open Problem

Is there an efficient algorithm for our regret?

I Less expressive than policies
I Historically the first notion of sleeping
I Efficient algorithm for expert setting
I Naive, grossly inefficient algorithm gets

Regret(Path) ≤ Diameter
√

T log |Paths|


