
Online Sabotaged Shortest Path

Manfred K. Warmuth Wouter M. Koolen Dmitry Adamskiy

Online shortest path

Goal: close to best path in hindsight
Solution: Component Hedge, Mirror Descent, FTPL

Online shortest path

Goal: close to best path in hindsight
Solution: Component Hedge, Mirror Descent, FTPL

Online shortest path

Goal: close to best path in hindsight
Solution: Component Hedge, Mirror Descent, FTPL

Online shortest path

Goal: close to best path in hindsight
Solution: Component Hedge, Mirror Descent, FTPL

Online shortest path

Goal: close to best path in hindsight
Solution: Component Hedge, Mirror Descent, FTPL

Delays, engineering works and strikes!

Adversarial losses. . .

. . . and some paths are blocked

What counts as a solution now?

“Good service on all other London Undergound lines”

Delays, engineering works and strikes!

Adversarial losses. . .

. . . and some paths are blocked

What counts as a solution now?

“Good service on all other London Undergound lines”

Delays, engineering works and strikes!

Adversarial losses. and some paths are blocked

What counts as a solution now?

“Good service on all other London Undergound lines”

Delays, engineering works and strikes!

Adversarial losses. and some paths are blocked

What counts as a solution now?

“Good service on all other London Undergound lines”

Previous work: policy regret

Compete with policy for choosing alternatives to blocked paths. . .
I In fully adversarial setting it is computationally hard already

for experts [Kanade and Steinke, 2014]:

A B

I If sabotages are stochastic and losses are decoupled from
them, then efficient algorithms exist [Neu and Valko, 2014]

Proposed notion of regret

We seek a natural notion of regret that avoids the hardness.

Get back to basics and compete with the path only on the rounds
when it is awake.

Regret(Path) =
∑

rounds when path
is awake

(
loss(Learner)− loss(Path)

)

Time

The Open Problem

Is there an efficient algorithm for our regret?

I Less expressive than policies
I Historically the first notion of sleeping
I Efficient algorithm for expert setting
I Naive, grossly inefficient algorithm gets

Regret(Path) ≤ Diameter
√

T log |Paths|

