Online Learning Algorithms

Work in Practice

Theoretical Performance Guarantees

?
Learning as a Game

- worst-case safe algorithm

Regret vs. problem instances:
- 0 (perfect)
- high (bad)

Special-purpose algorithm?
Practice is not Adversarial

- worst-case safe algorithm
- special-purpose algorithm

regret

problem instances

high (bad)

minimax

0 (perfect)
Luckiness

- worst-case safe algorithm
- special-purpose algorithm

Problem instances vs. regret

- high (bad)
- minimax

0 (perfect)
Fundamental model for learning: Hedge setting

- K experts

L learners play distribution $w^t = (w^t_1, ..., w^t_K)$ on experts

Adversary reveals expert losses $\ell^t = (\ell^t_1, ..., \ell^t_K) \in [0, 1]^K$

Learner incurs loss $w^\top \ell^t$

Evaluation criterion is the regret:

$$R_T := \sum_{t=1}^T w^\top \ell^t - \min_k \sum_{t=1}^T \ell^t_k$$
Fundamental model for learning: Hedge setting

- K experts

- In round $t = 1, 2, \ldots$
 - Learner plays distribution $w_t = (w^1_t, \ldots, w^K_t)$ on experts
 - Adversary reveals expert losses $\ell_t = (\ell^1_t, \ldots, \ell^K_t) \in [0, 1]^K$

- Learner incurs loss $w_t^T \ell_t$
Fundamental model for learning: Hedge setting

- K experts

- In round $t = 1, 2, \ldots$
 - Learner plays distribution $\mathbf{w}_t = (w^1_t, \ldots, w^K_t)$ on experts
 - Adversary reveals expert losses $\mathbf{\ell}_t = (\ell^1_t, \ldots, \ell^K_t) \in [0, 1]^K$

- Learner incurs loss $\mathbf{w}_t^T \mathbf{\ell}_t$

- Evaluation criterion is the regret:

$$\mathcal{R}_T := \sum_{t=1}^T \mathbf{w}_t^T \mathbf{\ell}_t - \min_k \sum_{t=1}^T \ell^k_t$$

\hspace{1cm} Learner \hspace{2cm} \min \hspace{2cm} \text{best expert}
Canonical algorithm for the Hedge setting

Hedge algorithm with learning rate η:

$$w_t^k := \frac{e^{-\eta L_{t-1}^k}}{\sum_k e^{-\eta L_{t-1}^k}}$$

where

$$L_{t-1}^k = \sum_{s=1}^{t-1} \ell_s^k.$$
Canonical algorithm for the Hedge setting

Hedge algorithm **with learning rate** \(\eta \):

\[
\begin{align*}
 w_t^k & := \frac{e^{-\eta L_{t-1}^k}}{\sum_k e^{-\eta L_{t-1}^k}} \\
 \text{where} \quad L_{t-1}^k & = \sum_{s=1}^{t-1} \ell_s^k.
\end{align*}
\]

The tuning \(\eta = \eta_{\text{worst case}} := \sqrt{\frac{8 \ln K}{T}} \) results in

\[
R_T \leq \sqrt{T/2 \ln K}
\]

and we have matching lower bounds.
Canonical algorithm for the Hedge setting

Hedge algorithm with learning rate η:

$$w_t^k := \frac{e^{-\eta L_{t-1}^k}}{\sum_k e^{-\eta L_{t-1}^k}} \quad \text{where} \quad L_{t-1}^k = \sum_{s=1}^{t-1} \ell_s^k.$$

The tuning $\eta = \eta_{\text{worst case}} := \sqrt{\frac{8 \ln K}{T}}$ results in

$$\mathcal{R}_T \leq \sqrt{\frac{T}{2 \ln K}}$$

and we have matching lower bounds.

Case closed?
Practitioners report that tuning $\eta \gg \eta_{\text{worst case}}$ works much better. [DGGS13]
Practitioners report that tuning $\eta \gg \eta_{\text{worst case}}$ works much better. [DGGS13]

Series of worst-case *data-dependent* improvements

$$R_T \leq \sqrt{T/2 \ln K}$$
Practitioners report that tuning $\eta \gg \eta_{\text{worst case}}$ works much better. [DGGS13]

Series of worst-case **data-dependent** improvements

$$R_T \leq \sqrt{\frac{T}{2\ln K}}$$

and **extension** to scenarios where Follow-the-Leader ($\eta = \infty$) shines (IID losses)

$$R_T \leq \min \{ R_T^{\text{worst case}}, R_T^\infty \}$$
Practitioners report that tuning $\eta \gg \eta_{\text{worst case}}$ works much better. [DGGS13]

Series of worst-case data-dependent improvements

$$\mathcal{R}_T \leq \sqrt{\frac{T}{2 \ln K}}$$

and extension to scenarios where Follow-the-Leader ($\eta = \infty$) shines (IID losses)

$$\mathcal{R}_T \leq \min \{ \mathcal{R}_T^{\text{worst case}}, \mathcal{R}_T^{\infty} \}$$

Case closed?
Grand goal: be almost as good as best learning rate η

$$R_T \approx \min_{\eta} R_T^{\eta}. $$

- Example problematic data
- Key ideas
Current η tunings miss the boat

$T = 100000$
Current η tunings miss the boat

$T = 100000$

R_T^{η}

Bad expert

<table>
<thead>
<tr>
<th>rounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>expert 0:</td>
</tr>
</tbody>
</table>

η
Current η tunings miss the boat

$T = 100000$

\mathcal{R}_T^{η}

<table>
<thead>
<tr>
<th>expert</th>
<th>rounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td>0 1 0 1 1 0 ...</td>
</tr>
<tr>
<td>2:</td>
<td>1 0 1 0 1 ...</td>
</tr>
</tbody>
</table>

Bad expert
FTL worst case
Current η tunings miss the boat

$T = 100000$

Bad expert
FTL worst case
WC-eta killer

<table>
<thead>
<tr>
<th>expert</th>
<th>rounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td>0 ... 0 1 0 1 0</td>
</tr>
<tr>
<td>2:</td>
<td>1 ... 1 0 1 0 1</td>
</tr>
</tbody>
</table>

\mathcal{R}_T as a function of η for different experts.
Current η tunings miss the boat

$T = 100000$

R_T^η

Bad expert, FTL worst case, WC-eta killer, Combined
LLR algorithm in a nutshell

LLR

- maintains a **finite grid** $\eta^1, \ldots, \eta^{i_{\text{max}}}, \eta^{\text{ah}}$
- cycles over the grid. For each η^i:
 - Play the η^i **Hedge weights**
 - Evaluate η^i by its **mixability gap**
 - Until its **budget** doubled
- adds next lower grid point on demand

Resources:
- **Time:** $O(K)$ per round (same as Hedge).
- **Memory:** $O(\ln T) \rightarrow O(1)$.
LLR algorithm in a nutshell

LLR

- maintains a finite grid $\eta^1, \ldots, \eta^{i_{\text{max}}}, \eta^{\text{ah}}$
- cycles over the grid. For each η^i:
 - Play the η^i Hedge weights
 - Evaluate η^i by its mixability gap
 - Until its budget doubled
- adds next lower grid point on demand

Resources:

- Time: $O(K)$ per round (same as Hedge).
- Memory: $O(\ln T) \rightarrow O(1)$.
Unavoidable notation

\[h_t = w_t^\top \ell_t, \quad \text{(Hedge loss)} \]
\[m_t = \frac{-1}{\eta} \ln \sum_k w_t^k e^{-\eta \ell_t^k}, \quad \text{(Mix loss)} \]
\[\delta_t = h_t - m_t. \quad \text{(Mixability gap)} \]
Unavoidable notation

\[h_t = w_t^\top \ell_t, \quad \text{(Hedge loss)} \]

\[m_t = -\frac{1}{\eta} \ln \sum_k w_t^k e^{-\eta \ell_t^k}, \quad \text{(Mix loss)} \]

\[\delta_t = h_t - m_t. \quad \text{(Mixability gap)} \]

And capitals denote cumulatives

\[\Delta_T = \sum_{t=1}^T \delta_t, \ldots \]
Key Idea 1: Monotone regret lower bound

Problem: Regret R^n_T is not increasing with T.

But we have a monotone lower bound:

$$R^n_T \geq \Delta^n_T$$

Proof:

$$R^n_t = H_T - L^*_T = \underbrace{H_T - M_T}_{\text{mixability gap}} + \underbrace{M_T - L^*_T}_{\text{mix loss regret}}$$

Now use

$$M_T = \frac{-1}{\eta} \ln \left(\sum_k \frac{1}{K} e^{-\eta L^*_k} \right) \in L^*_T + 0, \frac{\ln K}{\eta}$$

Upshot: measure quality of each η using cumulative mixability gap.
Key Idea 2: Grid of η suffices

For $\gamma \geq 1$:

$$\delta_t^{\gamma \eta} \leq \gamma e^{(\gamma - 1)(\ln K + \eta)} \delta_t^\eta$$

I.e. δ_t^η cannot be much better than $\delta_t^{\gamma \eta}$.

Exponentially spaced grid of η suffices.
Key Idea 3: Lowest η is “AdaHedge”

AdaHedge:

$$\eta_{ah}^{t} := \frac{\ln K}{\Delta_{t-1}^{ah}}$$

Result:

$$\mathcal{R}_{T} \leq \sum_{i=1}^{i_{\text{max}}} \Delta_{T}^{i} + c\Delta_{T}^{ah}$$
Key Idea 4: Budgeted timesharing

Active grid points

\[\eta^1, \eta^2, \ldots, \eta^{i_{\text{max}}}, \eta^t \]

with (heavy-tailed) prior distribution

\[\pi^1, \pi^2, \ldots, \pi^{i_{\text{max}}}, \pi^t \]

LLR maintains invariant:

\[\frac{\Delta^1_T}{\pi^1} \approx \frac{\Delta^2_T}{\pi^2} \approx \ldots \approx \frac{\Delta^{i_{\text{max}}}_T}{\pi^{i_{\text{max}}}} \approx \frac{\Delta^t_T}{\pi^t} \]

Run each \(\eta_i \) in turn until its cumulative mixability gap \(\frac{\Delta^i_T}{\pi^i} \) doubled.

\[\sum_{i=1}^{i_{\text{max}}} \Delta^i_T = \sum_{i=1}^{i_{\text{max}}} \pi^i \frac{\Delta^i_T}{\pi^i} \approx \frac{\Delta^j_T}{\pi^j} \sum_{i=1}^{i_{\text{max}}} \pi^i \leq \frac{\Delta^j_T}{\pi^j} \]
Putting it all together

Two bounds:

\[R_T \leq \tilde{O} \begin{cases} \ln K \ln \frac{1}{\eta} R_T^{\eta} & \text{for all } \eta \in [\eta_t^{ah}, 1] \\ R_T^{\infty} & \end{cases} \]
Run on synthetic data \((T = 2 \cdot 10^7)\)

![Graph showing regret vs learning rate with various algorithms including Hedge, AdaHedge, FlipFlop, LLR, and worst-case bound and worst-case learning rate.](image)
Conclusion

- Higher learning rates often achieve lower regret
 - In practice
 - Constructed data
- Learning the Learning Rate (LLR) algorithm
 - Performance close to best learning rate in hindsight
Conclusion

- Higher learning rates often achieve lower regret
 - In practice
 - Constructed data
- Learning the Learning Rate (LLR) algorithm
 - Performance close to best learning rate in hindsight

Open problems:
- LLR as PoC
 Can we do it simpler, prettier, smoother and tighter?
Thank you!
Marie Devaine, Pierre Gaillard, Yannig Goude, and Gilles Stoltz.

Forecasting electricity consumption by aggregating specialized experts; a review of the sequential aggregation of specialized experts, with an application to Slovakian and French country-wide one-day-ahead (half-)hourly predictions.