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Vertical axis:

✔ Prediction with expert advice: L1(x1:t)− L2(x1:t)

✔ Hypothesis testing: log
(
P1(x1:t)/P0(x1:t)

)

✔ The logarithm of a stock price.
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Vertical axis:

✔ Prediction with expert advice: L1(x1:t)− L2(x1:t)

✔ Hypothesis testing: log
(
P1(x1:t)/P0(x1:t)

)

✔ The logarithm of a stock price.

Goal: predict whether the line will go up or down.
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A basic investment strategy σt is to sell at a predetermined time t.
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quick! SELL!

from the future:
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A basic investment strategy σt is to sell at a predetermined time t.

Problem: in hindsight we know when the oil started leaking!
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We distribute our initial capital $1 over strategies σ0, . . . , σT .
Let τ(t) denote the fraction of capital assigned to σt.
Let Λ(0) = 0. We obtain payoff:

log
T∑

t=0

eΛ(t)τ(t) ≥ log
(

eΛ(t̂)τ(t̂)
)

= Λ(t̂)−
(
− log τ(t̂)

)
.
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We distribute our initial capital $1 over strategies σ0, . . . , σT .
Let τ(t) denote the fraction of capital assigned to σt.
Let Λ(0) = 0. We obtain payoff:

log
T∑

t=0

eΛ(t)τ(t) ≥ log
(

eΛ(t̂)τ(t̂)
)

= Λ(t̂)
︸︷︷︸

ideal

−
(
− log τ(t̂)

)

︸ ︷︷ ︸
regret

.

Regret may be relatively large or small, depending on

✔ The granularity of measurement
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We distribute our initial capital $1 over strategies σ0, . . . , σT .
Let τ(t) denote the fraction of capital assigned to σt.
Let Λ(0) = 0. We obtain payoff:

log
T∑

t=0

eΛ(t)τ(t) ≥ log
(

eΛ(t̂)τ(t̂)
)

= Λ(t̂)
︸︷︷︸

ideal

−
(
− log τ(t̂)

)

︸ ︷︷ ︸
regret

.

Regret may be relatively large or small, depending on

✔ The granularity of measurement ← undesirable!
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We parameterised the strategy to sell by time t. . .
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Let us now define σp to sell when Λ(t) ≥ p.

✔ Time-switched strategy σt: decision to sell depends on t

✔ Price-switched strategy σp: decision to sell depends on Λ(t)
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Let us now define σp to sell when Λ(t) ≥ p.

✔ Time-switched strategy σt: decision to sell depends on t

✔ Price-switched strategy σp: decision to sell depends on Λ(t)

We can no longer sell at every moment. But that’s OK.
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We can hedge, now with π on price levels, to obtain at least

log

p̂
∑

p=0

epπ(p) ≥ log
(

ep̂π(p̂)
)

= p̂
︸︷︷︸

ideal

−
(
− log π(p̂)

)

︸ ︷︷ ︸
regret

.

For sufficiently large p̂, the regret is relatively small!
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Actually, logprices are not integers and we do not pretend they are.

We can get very close to the previous bound:
if π is a decreasing density on the positive reals, then

log

∫
p̂

0

epπ(p) dp ≥ log

(

π(p̂)

∫
p̂

0

ep dp

)

= log(ep̂ − 1)
︸ ︷︷ ︸

≈ ideal p̂

−
(
− log π(p̂)

)

︸ ︷︷ ︸
regret

.

We cannot sell at p̂ exactly anymore → small additional overhead



Multiple Switches

What We Do

What We Actually
Do

Continuous Price

Multiple Switches

Continuous Time

Monotonicity

Regret Bound

Example

Algorithm

10 / 16

Actually, we are interested in exploiting multiple switches.

Let δ = (δ1, δ2, . . .). A strategy σδ:

✔ initially invests all capital

✔ sells all stock when the logprice goes up δ1 or more, then

✔ invests all capital again as it goes down δ2 or more,

✔ etcetera.
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To hedge, take the infinite product distribution of π.
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Intuition: Discontinuities in Λ are helpful.
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Intuition: Discontinuities in Λ are helpful.

Let the logprice function be Λ : [0, T ]→ R.
(A discrete time scenario can be modelled by a step function.)
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Intuition: Discontinuities in Λ are helpful.

Let the logprice function be Λ : [0, T ]→ R.
(A discrete time scenario can be modelled by a step function.)
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✔ We can simplify the analysis by assuming continuity.
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Intuition: The more fluctuations in Λ, the better.
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Intuition: The more fluctuations in Λ, the better.
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Intuition: The more fluctuations in Λ, the better.
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In summary, the regret compared to a specific σδ is maximised if

✔ Λ is continuous (Thm 1)

✔ Λ is monotonic in-between switches (Thm 2)

The worst case for regret coincides with the ideal case for analysis!
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Theorem 3 Fix Λ. For any basic strategy σδ that performs its

mth switch on Λ at time T , the payoff of our strategy is at least

∑

1≤odd i≤m

δi

︸ ︷︷ ︸

ideal

−

m∑

i=1

− log π(δi) − m · small

︸ ︷︷ ︸
regret

.
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Theorem 3 Fix Λ. For any basic strategy σδ that performs its

mth switch on Λ at time T , the payoff of our strategy is at least

∑

1≤odd i≤m

δi

︸ ︷︷ ︸

ideal

−

m∑

i=1

− log π(δi) − m · small

︸ ︷︷ ︸
regret

.

Thus,

✔ Small fluctuations are hard to exploit

✔ The bound is best applied to parsimonious strategies (with
small m)
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Strategy Payoff

Invest everything 90

Ideal 1021

Model 178

Bound 105

Actual performance 175
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Actual performance 175

✔ Performance on real stock: probably not brilliant

✔ Strategy still useful as a safeguard against excessive loss
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Strategy Payoff

Invest everything 90

Ideal 1021

Model 178

Bound 105

Actual performance 175

✔ Performance on real stock: probably not brilliant

✔ Strategy still useful as a safeguard against excessive loss

✔ In other applications Λ is usually less adversarial

✔ Performance is competitive with Fixed Share and typically
better than Variable Share for log loss.
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A simple algorithm is described in the paper:

✔ Statisticians: “It’s just Bayes”

✔ Learning Theorists: “It’s just the Aggregating Algorithm”
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A simple algorithm is described in the paper:

✔ Statisticians: “It’s just Bayes”

✔ Learning Theorists: “It’s just the Aggregating Algorithm”

✔ Runs in O(n2) time and O(n) memory.

✔ If π is memoryless (exponential) running time can be reduced
to O(n).
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A simple algorithm is described in the paper:

✔ Statisticians: “It’s just Bayes”

✔ Learning Theorists: “It’s just the Aggregating Algorithm”

✔ Runs in O(n2) time and O(n) memory.

✔ If π is memoryless (exponential) running time can be reduced
to O(n).

✔ It buys when you’re losing, and sells when you’re winning?!
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Thanks
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