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Context

We will be learning a single time interval

Adversarial data (not stochastic processes)

Online model (not batch inference)

Competitive guarantees (not Bayesian)

Based on (Koolen and Vovk, 2014)
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At a glance

“Buy low, sell high” a desirable target

Simple: just need low and high trading price

Problem: Good trading prices depend on the data.

Idea: Could we learn best low/high prices?

I.e. by online trading guarantee payoff as if we knew them?

Answer: a firm and crisp almost

Our work: complete characterisation of that “almost”.
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Protocol

Initial capital K0 := 1
Initial price ω0 := 1

For day t = 1, 2, . . .

1 Investor takes position St ∈ R
2 Market reveals price ωt ∈ [0,∞)

3 Capital becomes Kt := Kt−1 + St(ωt − ωt−1)

A position

St < 0 is called short

St > 0 is called long

St > Kt−1/ωt−1 is called leveraged

Bankrupt when capital Kt < 0 is negative.

No assumptions about price-generating process. Full information
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Adjuster

Definition

A price path ω0, . . . , ωt upcrosses interval [a, b] if

there are 0 ≤ ta ≤ tb ≤ t s.t. ωta ≤ a and ωtb ≥ b.

Definition

A strategy prescribes position St based on the past prices ω0, . . . , ωt−1.

Definition

A function G : (0, 1]× [0,∞) → [0,∞) is called an adjuster if there is a
strategy that guarantees

Kt ≥ G (a, b)

for each [a, b] upcrossed by ω0, . . . , ωt .
An adjuster G is admissible if it is not strictly dominated.

Sneak peak: Ideal G (a, b) = b/a is not an adjuster. But we can get close.
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Sequential Threshold strategies

Fix price levels α < β. The threshold adjuster

Gα,β(a, b) =
β

α
1{a≤α}1{b≥β}

is witnessed by the threshold strategy Sα,β that

takes position 0 until the price drops below α

takes position 1/α until the price rises above β

takes position 0 thereafter

Conjecture

Optimal strategies allocate their initial 1€ to threshold strategies
according to some probability measure P(α, β), and hence achieve

GP(a, b) =

∫
Gα,β(a, b) dP(α, β).

False! GP is typically strictly dominated
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Mixtures of thresholds are generally dominated

G (a, b) :=
1

2
G1,2(a, b)+

1

2
G 1

2
,1(a, b) = 1{a ≤ 1 and b ≥ 2}+1{a ≤ 1

2
and b ≥ 1}.
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The GUT of Adjusters

Let G be left/right continuous and de/increasing.

Theorem (Characterisation)

G is an adjuster iff∫ ∞

0
1− exp

(
−
∫
G(a,b)≥h

da db

(b − a)2

)
dh ≤ 1.

Moreover, G is admissible iff this holds with equality and G is saturated.

Lower bound from option pricing

Upper bound from explicitly constructed strategy

Temporal reasoning evaporated.
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Simple adjusters

Corollary (Sell high Dawid, De Rooij, Grünwald, Koolen, Shafer, Shen, Vereshchagin, and Vovk, 2011)

Let G (a, b) := F (b ∨ 1). G is an adjuster iff∫ ∞

1

F (y)

y2
dy ≤ 1.

Corollary (Length)

Let G (a, b) := F (b − a). G is an adjuster iff∫ ∞

0
F (y)

e−1/y

y2
dy ≤ 1.

Corollary (Ratio)

Let G (a, b) := F (b/a) for some unbounded F . Then G is not an adjuster.
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Our favourite adjuster

Let 0 ≤ q < p < 1. Then

G (a, b) :=
(b − a)p

aq︸ ︷︷ ︸
≈b/a

(p−q
p )p

Γ(1− p)︸ ︷︷ ︸
normalisation

is an admissible adjuster.

Strategy: In situation ω with minimum price m take position

S(ω) =
(p − q)

m1−p+q
Φ

(
m

p−q
p(

XG (ω)Γ(1− p)
)1/p

)

where Φ is the CDF of the Gamma distribution.
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What just happened

We took “buy low, sell high” as the learning target

We consider parametrised payoff guarantees

We classified candidate guarantees using a simple formula

(≤ 1) Attainable adjuster
(= 1) Admissible adjuster
(> 1) Not an adjuster

Looked at some interesting example adjusters
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Thank you!
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