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Setup



Simplest composite vs composite example

Consider data stream X1,X2, . . .

We assume throughout that Xi are i.i.d. N (δσ, σ2) for some effect size δ and variance σ2.

Aim: to disqualify the composite null of no effect

H0 =
{
δ = 0, σ2 > 0

}
with the help of the composite alternative that the effect size is a given δ+ > 0

H+ =
{
δ = δ+, σ

2 > 0
}
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Is that hard?



Nuisance

The variance/scale σ2 is a nuisance parameter.

The nuisance is a group (here: positive scaling)

We can quotient it out

• Coarsen the data

• Work with orbits
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Coarsening the data

Define the coarsening (Zi )i≥1 of the data (Xi )i≥1 by

Zi =
Xi

|X1|

Everyone in H0 agrees about the distribution of Z1,Z2, . . .

And everyone in Hδ+ agrees about the distribution of Z1,Z2, . . .

yet they don’t agree with each other.

Both null and alternative collapse to a point. NB: both see (Zi )i≥1 as dependent (not i.i.d.)!
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Coarsened Likelihood Ratio

Let p0(Z
n) and pδ+(Z

n) be the density of the coarsening Z n under the null and the alternative.

Let’s look at the process (Mn)n≥0

Mn :=
pδ+(Z

n)

p0(Z n)



Representations of the coarsened likelihood ratio

Let Sn =
∑n

i=1 Xi and Vn =
∑n

i=1 X
2
i and Rn = Sn√

Vn
.
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the non-central Student-t form
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Martingale

Is the coarsened likelihood ratio a martingale for H0?

Mn =
pδ+(Z

n)

p0(Z n)

NB: for every P ∈ H0

EP [Mn+1|Z n] = Mn

But

EP [Mn+1|X n] ̸= Mn

Consequently: We get Type-1 error control by Ville’s inequality: for every P ∈ H0:

P0

{
∃n : Mn ≥ 1

α

}
≤ α

And we stop at the right moment: for every P ∈ H+,

EP [τ ] ≈
2 ln 1

α

ln(1 + δ2+)
=

ln 1
α

KL (H+∥H0)
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e-variable

Recall our null of zero effect was

H0 = {δ = 0, σ2 > 0}.

Let’s look at the much larger null of negative effect

H≤0 := {δ ≤ 0, σ2 > 0}

[Pér+24] show that for every P ∈ H≤0 and fixed n,

EP [Mn] ≤ 1

We say “Mn is an e-variable against H≤0”.
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The Engine of Safety for One-Sided Null

Definition

Random variable T has monotone likelihood ratio (MLR) if, whenever δ′ ≥ δ,

pTδ′(t)

pTδ (t)
is increasing in t

Lemma

For MLR variable T , for all δ− ≤ 0 ≤ δ+,

Eδ−

[
pδ+(T )

p0(T )

]
≤ 1.

Proof runs via stochastic dominance.

In our case, the t-statistic Tn at sample size n has MLR. So
pδ+ (Tn)

pδ0 (Tn)
is an e-variable for H≤0.
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Summary so far

Mn is

• a martingale against every P ∈ H0 on the filtration (σ(Z n))n≥0:

EP0 [Mn+1|Z n] = Mn

• an e-variable for every P ∈ H≤0 on σ(Z n) for every n.



Posing the Problem



Open problem

Recall the null of negative effect

H≤0 := {δ ≤ 0, σ2 > 0}.

Question

Is (Mn)n≥0 a supermartingale against negative effect (i.e. for every P ∈ H≤0)?



Resolution



Monotone Likelihood Ratio

For

Mn =
pδ+(Z

n)

p0(Z n)

and δ− ≤ 0, we aim to show

Eδ− [Mn+1|Z n] ≤ Mn

Attempt 1: Fix Z n. Then Mn+1

Mn
=

pδ+ (Zn+1|Z n)

p0(Zn+1|Z n) . Does Zn+1 have the monotone likelihood ratio

property under the conditional model Pδ (·|Z n)?

NO!
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Sufficiency to the Rescue

Recall that

Mn =
P
(
Tn; n − 1, δ+

√
n
)

P (Tn; n − 1, 0)

where Tn is the t-statistic. We then have

Mn+1

Mn
=

pδ+(Zn+1|Z n)

p0(Zn+1|Z n)

sufficiency
=

pδ+(Tn+1|Z n)

p0(Tn+1|Z n)

sufficiency
=

pδ+(Tn+1)

p0(Tn+1)

p0(Z
n)

pδ+(Z
n)

and so the conditional likelihood ratio is increasing.
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The general case

Theorem

Fix δ0 ≤ δ+. Let (Tn)n∈N be a sequence of sufficient statistics satisfying the monotone

likelihood ratio property. Then the process

(∏n
i=1

p
Ti
δ+

(Ti |U i−1)

p
Ti
δ0
(Ti |U i−1)

)
n∈N

is identical to the

likelihood ratio process
(

pδ+ (Un)

pδ0
(Un)

)
n∈N

and both are “test” (positive, starting at 1)

supermartingales relative to the one-sided null H≤0.



Linear Regression



Linear Regression with Nuisance Covariates

Consider i.i.d. observations (Xi ,Yi ,Zi ) from the linear regression model

Yi = δσXi + β⊺Zi + σεi ,

where δ ∈ R, β ∈ Rd and σ ∈ R+ are the parameters, and ε1, . . . , εn are i.i.d. N (0, 1).

We aim to test the effect size δ. We treat the coefficients β and scale σ as nuisance.

H0 =
{
δ = 0, σ2 > 0, β ∈ Rd

}
vs H+ =

{
δ = δ+, σ

2 > 0, β ∈ Rd
}
.



Result for Linear Regression

In fact, here the nuisance is again a group (scaling and general linear).

We can quotient it out, e.g. by coarsening the labels Y n to

Un :=
AnY

n

∥AnY n∥
∈ Sn−d−1 ⊆ Rn−d

where A⊺
nAnY

n is residual of linear regression of labels Y n onto nuisance covariates Z1, . . . ,Zn.



Linear Regression ctd

Let us define

Tn :=

b⊺
n

∥bn∥Un

1√
n−d−1

∥PnUn∥

where

bn := AnX
n ∈ Rn−d and Pn := In −

bnb
⊺
n

b⊺nbn

Then

• Tn is a sufficient statistic for the data U1,U2, . . . ,Un.

• Tn has non-central Student-t distribution with n − d − 1 degrees of freedom and

non-centrality parameter δ∥bn∥
• Tn has the MLR property

So Mn :=
fT(n−d−1,δ+∥bn∥)(Tn)

f
T(n−d−1,0)

(Tn)
is a test supermartingale under the entire null H≤0.
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Conclusion

• The t-test is a supermartingale after all

• Due the monotone likelihood ratio property of a sufficient statistic

• This upgrades to many cases: χ2, linear regression, . . .

• Building block for all sorts of anytime-valid testing and inference

Let’s talk!
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