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Motivating question

Better to switch from current system to new version or or ?

• A/B testing

• Adaptive clinical trial

• Best arm identification
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Let’s find out in production!
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Efficient asymptotically instance-optimal algorithms

Model BAI

Gaussian reward, known covariance (Garivier and Kaufmann, 2016)

Gaussian reward, unknown covariance (Jourdan, Degenne, and Kaufmann, 2023)

Non-parametric reward on unit interval (Agrawal, Juneja, and Glynn, 2020)



Twist



Toward Practical Best Arm Identification

Classical BAI is about finding the most effective arm (highest expected reward).

⇒ Arms are univariate distributions.

Often our testing task involves a constraint:

• Find most effective promotion strategy within budget constraint

• Find most effective ad bidding strategy within ROI constraint

• Find most effective treatment within safety constraint

• Find most effective code within crash percentage constraint

• . . .

⇒ Arms are bivariate distributions.



Toward Practical Best Arm Identification

Classical BAI is about finding the most effective arm (highest expected reward).

⇒ Arms are univariate distributions.

Often our testing task involves a constraint:

• Find most effective promotion strategy within budget constraint

• Find most effective ad bidding strategy within ROI constraint

• Find most effective treatment within safety constraint

• Find most effective code within crash percentage constraint

• . . .

⇒ Arms are bivariate distributions.



Upgrade with Constraints

We upgrade arms to bivariate distributions on reward and cost.

CBAI: find the arm of highest expected reward among all arms with expected cost below a

given threshold γ

• Reward and cost are typically dependent.

• Dependency structure matters! Must be learned. Must be reasoned about.

• How?

⇒ Crucial what we assume about the joint distribution



Which is the constrained best arm?



Problem



CBAI

An arm model M is a collection of distributions on R2. (we’ll focus on three arm models)

We denote the mean of an arm ν ∈ M by m(ν) = (m1(ν),m2(ν)).

A bandit with K arms from M is an element of MK .

Definition

Fix threshold γ ∈ R. The constrained best arm of bandit ν ∈ MK is

i∗(ν) := argmax
k∈[K ]

m2(νk )≤γ

m1(νk)

where we introduce the convention that argmax ∅ := None, and assume no ties for max.

NB: i∗ maps K -armed bandit to K + 1 answers {1, . . . ,K , None}.
NB: only accesses bandit ν through arm means m(ν1) · · ·m(νK )
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Practice w. CBAI definition

Which is the constrained best arm?

(a) (b) (c)



Three Models

1. Gaussian with fixed covariance Σ ⪰ 0: MG ,Σ :=
{
N (µ,Σ)

∣∣µ ∈ R2
}
.

2. Gaussian with unknown covariance: MG :=
{
N (µ,Σ)

∣∣µ ∈ R2,Σ ⪰ 0
}
.

3. Non-parametric distributions on the unit square: MB :=
{
P
∣∣P on [0, 1]2

}
.



Protocol

We work in the setting of fixed confidence δ ∈ (0, 1). Fix bandit ν ∈ MK .

Protocol

For t = 1, 2, . . . , τ :

• Learner picks an arm It ∈ [K ].

• Learner sees reward-cost pair (Rt ,Ct) ∼ νIt

Learner recommends constrained best arm ı̂ ∈ {1, . . . ,K , None}.

Strategy for Learner specified by

• sampling rule It

• stopping rule τ

• recommendation rule ı̂
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Fixed Confidence Setting

Fix δ ∈ (0, 1). An algorithm is δ-correct if for every bandit ν ∈ MK

Pν {τ < ∞ and ı̂ ̸= i∗(ν)} ≤ δ.

Among δ-correct algorithms, we aim to minimise the sample complexity

E
ν
[τ ]



The Lower Bound Driving

Algorithm Design



The Story from Here

• We follow the Track-and-Stop approach by Garivier and Kaufmann, 2016

1. Prove instance-dependent sample complexity lower bound

2. Characterise instance-optimal sampling proportions of arms

3. Design sampling rule to match

4. Combine with GLRT stopping and recommendation (δ-correct)

5. ⇒ algorithm with asymptotically optimal sample complexity

• Main ingredient that needs updating is the lower bound

• New instance-optimal sampling proportions

• And question of how to compute them



Information Theoretic Lower Bound

Theorem (Garivier and Kaufmann, 2016)

Let δ ∈ (0, 1). For any δ-correct strategy with stopping time τ and any bandit ν ∈ MK ,

Eν [τ ] ≥ T ∗(ν) kl (δ∥1− δ) ,

where

T ∗(ν)−1 = max
w∈△K

min
ν′∈MK

i∗(ν )̸=i∗(ν′)

K∑
k=1

wk KL (νk∥ν′k) . (1)

As i∗(ν) is a function of the means m(ν1) · · ·m(νK ), we can simplify this to

T ∗(ν)−1 = max
w∈△K

min
λ∈RK×2

i∗(ν) ̸=i∗(λ)

K∑
k=1

wk KLinf(νk ,λk). (2)

where KLinf(ν,λ) := min
ν′∈M

m(ν′)=λ

KL (ν∥ν′) .



KLInf

T ∗(ν)−1 = max
w∈△K

min
λ∈RK×2

i∗(ν) ̸=i∗(λ)

K∑
k=1

wk KLinf(νk ,λk).

Example

Consider a Gaussian arm ν = N (µ,Σ).

For Gaussians with fixed covariance Σ, i.e. MG ,Σ =
{
N (µ,Σ)

∣∣µ ∈ R2
}
,

KLinf(ν,λ) =
1

2
∥µ− λ∥2Σ−1

For Gaussians with unknown covariance MG =
{
N (µ,Σ)

∣∣µ ∈ R2,Σ ⪰ 0
}

KLinf(ν,λ) =
1

2
ln
(
1 + ∥µ− λ∥2Σ−1

)



Understanding the Alternative

T ∗(ν)−1 = max
w∈△K

min
λ∈RK×2

i∗(ν) ̸=i∗(λ)

K∑
k=1

wk KLinf(νk ,λk).

(a) (b) (c) (d) (e)

We only ever need to move two arms.



Extracting a Model-Independent Interface

1. the cost for making arm νj beat arm νi (here i can be assumed feasible)

c1(νi , νj ,w) := min
λi ,λj∈R2

λi,1 ≤ λj,1 and λj,2 ≤ γ

KLinf(νi ,λi ) + w KLinf(νj ,λj). (3)

2. the cost for changing the feasibility status of an arm ν

c2(ν) :=


minλ∈R2

λ2≥γ

KLinf(ν,λ) if m2(ν) ≤ γ

minλ∈R2

λ2≤γ

KLinf(ν,λ) if m2(ν) > γ
.

In terms of this interface, our problem simplifies to

T ∗(ν)−1 = max
w∈△K

min
{
minj ̸=i∗ wi∗c1

(
νi∗ , νj ,

wj

wi∗

)
,wi∗c2(νi∗)

}
if i∗ ̸= None,

minj∈[K ] wjc2(νj) if i∗ = None.
(4)



Characterisation of Sample Complexity

Theorem

Fix bandit ν ∈ MK . Let i∗ := i∗(m). For all i ∈ [K ], we have

T ∗(ν) =


∑K

j=1 w̃j (C̃
∗)

C̃∗∑K
j=1 c2(νj)

−1
and w∗

i (ν) =


w̃i (C̃

∗)∑K
j=1 w̃j (C̃∗)

if i∗ ̸= None

c2(νi )
−1∑K

j=1 c2(νj )−1 if i∗ = None

where w̃i∗(C̃ ) := 1, and for each sub-optimal j ̸= i∗, w̃j(C̃ ) is the unique solution to w in

c1(νi∗ , νj ,w) = C̃ , (5)

and C̃∗ is the unique solution for C̃ in

∑
j ̸=i∗

c1,i∗
(
νi∗ , νj , w̃j(C̃ )

)
c1,j

(
νi∗ , νj , w̃j(C̃ )

) = 1 (6)

clamped to the interval
[
0, c2(νi∗)

]
.



Efficient Computation

One outer binary search to compute C̃ .

One inner binary search per arm to compute w̃j(C ).

Same computational cost as (Garivier and Kaufmann, 2016) for the oracle weights in BAI.

It remains to implement c1 and c2.



Implementing the Interface for

our Three Models



Recall our three models

1. Gaussian with fixed covariance Σ ⪰ 0: MG ,Σ :=
{
N (µ,Σ)

∣∣µ ∈ R2
}
.

2. Gaussian with unknown covariance: MG :=
{
N (µ,Σ)

∣∣µ ∈ R2,Σ ⪰ 0
}
.

3. Non-parametric distributions on the unit square: MB :=
{
P
∣∣P on [0, 1]2

}
.

Here we implement the most interesting function form the interface

c1(νi , νj ,w) := min
λi ,λj∈R2

λi,1 ≤ λj,1 and λj,2 ≤ γ

KLinf(νi ,λi ) + w KLinf(νj ,λj).



Gaussian with Known Covariance Σ

Theorem

Fix bivariate νi = N (µi ,Σ) and νj = N (µj ,Σ) with i∗({µi ,µj}) = i , then

c1(νi , νj ,w) =



w(µj,2−γ)2

2Σ22
if µj,1 − Σ12

Σ22
(µj,2 − γ)+ ≥ µi,1

(µj,1−µi∗,1)
2

2Σ11(1+
1
w )

if µj,2 +
1
w Σ12

Σi,11+
1
w Σ11

(µi,1 − µj,1) ≤ γ

wΣ11(γ−µj,2)
2+|Σ|

∥∥∥µj,1 − µi∗,1

µj,2 − γ

∥∥∥2

Σ−1

2(Σ11Σ22+|Σ| 1
w )

else.

Closed form, O(1) per arm.



Gaussian with Unknown Covariance

Theorem

Fix bivariate νi = N (µi ,Σi ) and νj = N (µj ,Σj). Abbreviating ℓ(x) := 1
2 ln(1 + x),

c1(νi , νj ,w) = min
θ∈R

ℓ

(
(µi,1 − θ)2+

Σi,11

)
+ w



0 if µi,2 ≤ γ and µj,1 ≥ θ

ℓ
(

(µj,2−γ)2+
Σj,22

)
if µj,1 − Σj,12

Σj,22
(µj,2 − γ)+ ≥ θ

ℓ
(

(µj,1−θ)2−
Σj,11

)
if µj,2 +

Σj,12

Σj,11
(µj,1 − θ)− ≤ γ

KLinf(νj , (θ, γ)) else.

This is the minimum (in θ) of four sum-of-log-of-one-plus-square. Cancelling the derivative

results in a cubic equation. Even with careful tracking of case jurisdictions, O(1) per arm.



Non-parametric distributions on the unit square

Theorem

Let νi , νj be bivariate distributions on [0, 1]2. Then

c1(νi , νj ,w) = max
b∈(⋆)

b3≥0≥b2

E
νi

[ln(1− w(b1 + b2R))] + w E
νj

[ln(1 + b1 + b2R + b3(C − γ))]

where (⋆) ensures that the argument of the log is positive for all (x1, x2) in the unit square.

The constraints on b are a polyhedron in 3 variables with six faces.

For νi , νj supported on n points, this takes time O(n) with e.g. Ellipsoid.



Achieving Asymptotic Optimality



Steps to a full Algorithm

We saw the calculation of the characteristic time T ∗(ν) and the oracle weights w∗(ν).

The rest follows the track-and-stop (TaS) framework.

• Empirical plug-in estimate of the bandit

• GLR stopping rule

• Empirical answer recommendation

Theorem

TaS is asymptotically optimal, i.e. limδ→0
Eν [τδ ]

ln 1
δ

= T ∗(ν).



Empirical Results



Sample Complexity

Easy Hard All feasible None feasible

10.5, 48.3 410.4, 1890.0 26.5, 122.0 29.3, 134.9

36, 24, 21, 10, 09 18, 39, 39, 03, 01 40, 39, 14, 04, 03 03, 04, 10, 19, 65



The Impact of Dependency

We study the following two-arm problem νρ in the fixed covariance Gaussian model as a

function of correlation ρ ∈ [−1, 1]: γ = 2
3 , µ1 = (0, 0) , µ2 =

(
− 1

4 , 1
)
, cost and reward each

have variance 1, and the correlation between them is ρ.

Sample complexity T ∗(νρ).



Conclusion



Results: Efficient asymptotically instance-optimal algorithms

Model BAI (1d) CBAI (2d)

Gaussian, known covariance (Garivier and Kaufmann, 2016) Here

Gaussian, unknown covariance (Jourdan, Degenne, and Kaufmann, 2023) Here

Non-parametric on hypercube (Agrawal, Juneja, and Glynn, 2020) Here



Conclusion

We motivated the constrained best arm identification problem.

This necessitated going bivariate (reward and cost).

We developed asymptotically optimal algorithms for different model assumptions.

We extracted a generic interface for analysis and computation

And implemented it efficiently for the three models

The method works in practice.

Let’s talk!
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