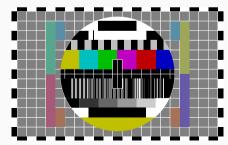
The t-test is a supermartingale after all

Wouter M. Koolen E-Readers, April 4, 2025

CWI and University of Twente



Warm Thanks

Peter Grünwald

Menu

1. Introduction

2. Setup

- 3. Posing the Problem
- 4. Resolution
- 5. Linear Regression

Introduction

We want to do sequential hypothesis testing.

We want to do sequential hypothesis testing.

As an example, consider i.i.d. X_1, X_2, \ldots from either P_{δ} or P_0 .

We want to do sequential hypothesis testing.

As an example, consider i.i.d. X_1, X_2, \ldots from either P_{δ} or P_0 .

A sequential test at confidence $\alpha \in (0,1)$ is a stopping time τ such that

- Safety: $P_0 \{ \tau < \infty \} \le \alpha$.
- Power: $\mathbb{E}_{P_{\delta}}[\tau]$ is small.

We want to do sequential hypothesis testing.

As an example, consider i.i.d. X_1, X_2, \ldots from either P_{δ} or P_0 .

A sequential test at confidence $\alpha \in (0,1)$ is a stopping time au such that

- Safety: $P_0 \{ \tau < \infty \} \le \alpha$.
- Power: $\mathbb{E}_{P_{\delta}}[\tau]$ is small.

Lower bound: for any sequential test τ , sample complexity is at least $\mathbb{E}_{P_{\delta}}[\tau] \geq \frac{\ln \frac{1}{\alpha}}{\mathsf{KL}(P_{\delta} || P_{\Omega})}$

We want to do sequential hypothesis testing.

As an example, consider i.i.d. X_1, X_2, \ldots from either P_{δ} or P_0 .

A sequential test at confidence $\alpha \in (0,1)$ is a stopping time au such that

- Safety: $P_0 \{ \tau < \infty \} \le \alpha$.
- Power: $\mathbb{E}_{P_{\delta}}[\tau]$ is small.

Lower bound: for any sequential test τ , sample complexity is at least $\mathbb{E}_{P_{\delta}}[\tau] \geq \frac{\ln \frac{1}{\alpha}}{\mathsf{KL}(P_{\delta} || P_0)}$ A great idea: consider the likelihood ratio-based sequential test

$$M_n := \left. rac{P_\delta(X^n)}{P_0(X^n)}
ight.$$
 and take $au := \left. \inf \left\{ n \ge 0 \right| M_n \ge rac{1}{lpha}
ight\}$

We want to do sequential hypothesis testing.

As an example, consider i.i.d. X_1, X_2, \ldots from either P_{δ} or P_0 .

A sequential test at confidence $\alpha \in (0,1)$ is a stopping time au such that

- Safety: $P_0 \{ \tau < \infty \} \le \alpha$.
- Power: $\mathbb{E}_{P_{\delta}}[\tau]$ is small.

Lower bound: for any sequential test τ , sample complexity is at least $\mathbb{E}_{P_{\delta}}[\tau] \geq \frac{\ln \frac{1}{\alpha}}{\mathsf{KL}(P_{\delta} || P_0)}$ A great idea: consider the likelihood ratio-based sequential test

$$M_n := \left. rac{P_\delta(X^n)}{P_0(X^n)}
ight.$$
 and take $au := \left. \inf \left\{ n \ge 0
ight| M_n \ge rac{1}{lpha}
ight\}$

As M_n is a P_0 test martingale, Ville's inequality gives us safety: $P_0\left\{\exists n: M_n \geq \frac{1}{\alpha}\right\} \leq \alpha$. Wald's equation gives us $\mathbb{E}_{P_{\delta}}[\tau] \approx \frac{\ln \frac{1}{\alpha}}{\mathsf{KL}(P_{\delta} \parallel P_0)}$

Now consider rejecting a composite null \mathcal{H}_0 with the help of a composite alternative \mathcal{H}_1 .

Now consider rejecting a composite null \mathcal{H}_0 with the help of a composite alternative \mathcal{H}_1 .

Now consider rejecting a composite null \mathcal{H}_0 with the help of a composite alternative \mathcal{H}_1 .

Now consider rejecting a composite null \mathcal{H}_0 with the help of a composite alternative \mathcal{H}_1 .

Approach	M _n	e	19
Classical statistics	$\frac{\max_{P\in\mathcal{H}_1}P(X^n)}{\max_{P\in\mathcal{H}_0}P(X^n)}$	well-understood asymptotics	hard to calibrate

Now consider rejecting a composite null \mathcal{H}_0 with the help of a composite alternative \mathcal{H}_1 .

Approach	M _n	e	19
Classical statistics	$\frac{\max_{P\in\mathcal{H}_1}P(X^n)}{\max_{P\in\mathcal{H}_0}P(X^n)}$	well-understood asymptotics	hard to calibrate
Bayesian approach	$\frac{\int_{\mathcal{H}_1} P(X^n) w_1(dP)}{\int_{\mathcal{H}_0} P(X^n) w_0(dP)}$	symmetry	no martingale

Now consider rejecting a composite null \mathcal{H}_0 with the help of a composite alternative \mathcal{H}_1 .

Approach	M _n	e	8
Classical statistics	$\frac{\max_{P\in\mathcal{H}_1}P(X^n)}{\max_{P\in\mathcal{H}_0}P(X^n)}$	well-understood asymptotics	hard to calibrate
Bayesian approach	$\frac{\int_{\mathcal{H}_1} P(X^n) w_1(dP)}{\int_{\mathcal{H}_0} P(X^n) w_0(dP)}$	symmetry	no martingale
Universal Inference	$\frac{\int_{\mathcal{H}_1} P(X^n) w_1(dP)}{\max_{P \in \mathcal{H}_0} P(X^n)}$	Ville (e-process)	twice conservative

Now consider rejecting a composite null \mathcal{H}_0 with the help of a composite alternative \mathcal{H}_1 .

Approach	M _n	(19)	8
Classical statistics	$\frac{\max_{P\in\mathcal{H}_1}P(X^n)}{\max_{P\in\mathcal{H}_0}P(X^n)}$	well-understood asymptotics	hard to calibrate
Bayesian approach	$\frac{\int_{\mathcal{H}_1} P(X^n) w_1(dP)}{\int_{\mathcal{H}_0} P(X^n) w_0(dP)}$	symmetry	no martingale
Universal Inference	$\frac{\int_{\mathcal{H}_1} P(X^n) w_1(dP)}{\max_{P \in \mathcal{H}_0} P(X^n)}$	Ville (e-process)	twice conservative
GRO(W)		log-optimal	fixed sample size n

Now consider rejecting a composite null \mathcal{H}_0 with the help of a composite alternative \mathcal{H}_1 .

Idea: find a measure of evidence that behaves like a likelihood ratio.

Approach	M _n	(19
Classical statistics	$\frac{\max_{P\in\mathcal{H}_1}P(X^n)}{\max_{P\in\mathcal{H}_0}P(X^n)}$	well-understood asymptotics	hard to calibrate
Bayesian approach	$\frac{\int_{\mathcal{H}_1} P(X^n) w_1(dP)}{\int_{\mathcal{H}_0} P(X^n) w_0(dP)}$	symmetry	no martingale
Universal Inference	$\frac{\int_{\mathcal{H}_1} P(X^n) w_1(dP)}{\max_{P \in \mathcal{H}_0} P(X^n)}$	Ville (e-process)	twice conservative
GRO(W)		log-optimal	fixed sample size <i>n</i>

The theory of e-variables aims to find better likelihood-ratio-like quantities.

Regarding your evidence process for the t-test

Regarding your evidence process for the t-test

Lovely! What about it?

Regarding your evidence process for the t-test

Lovely! What about it?

It is martingale against zero effect [GdHK24]

Regarding your evidence process for the t-test

Lovely! What about it?

It is martingale against zero effect [GdHK24]

and e-variable against negative effect [Pér+24]

Lovely! What about it?

It is martingale against zero effect [GdHK24]

and e-variable against **negative** effect [Pér+24]

But supermartingale against negative effect?

Lovely! What about it?

B

It is martingale against zero effect [GdHK24]

and e-variable against **negative** effect [Pér+24]

But supermartingale against negative effect?

Surely! Hold on ...

Lovely! What about it?

It is martingale against zero effect [GdHK24]

and e-variable against **negative** effect [Pér+24]

But supermartingale against negative effect?

Surely! Hold on ...

— several months later —

Lovely! What about it?

It is martingale against zero effect [GdHK24]

and e-variable against **negative** effect [Pér+24]

But supermartingale against negative effect?

Surely! Hold on ...

- several months later -

Not trivial, eh?

Lovely! What about it?

and e-variable against negative effect [Pér+24]

But supermartingale against negative effect?

Surely! Hold on ...

— several months later —

Not trivial, eh?

... only mild partial progress ...

Lovely! What about it?

It is martingale against zero effect [GdHK24]

and e-variable against **negative** effect [Pér+24]

But supermartingale against negative effect?

Surely! Hold on ...

— several months later —

Not trivial, eh?

... only mild partial progress ...

— one eternity later —

Lovely! What about it?

and e-variable against negative effect [Pér+24]

But supermartingale against negative effect?

Surely! Hold on ...

- several months later -

Not trivial, eh?

... only mild partial progress ...

— one eternity later —

Ok, supermartingale after all.

Setup

Simplest composite vs composite example

Consider data stream X_1, X_2, \ldots

Simplest composite vs composite example

Consider data stream X_1, X_2, \ldots

We assume throughout that X_i are i.i.d. $\mathcal{N}(\delta\sigma, \sigma^2)$ for some effect size δ and variance σ^2 .

Simplest composite vs composite example

Consider data stream X_1, X_2, \ldots

We assume throughout that X_i are i.i.d. $\mathcal{N}(\delta\sigma, \sigma^2)$ for some effect size δ and variance σ^2 .

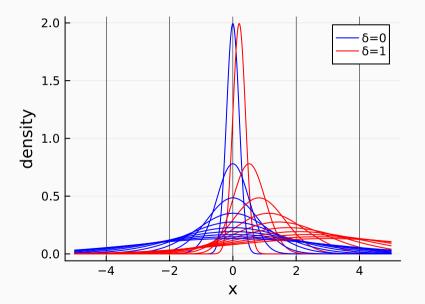
Aim: to disqualify the composite null of no effect

$$\mathcal{H}_0 = \left\{ \delta = 0, \sigma^2 > 0 \right\}$$

with the help of the composite alternative that the effect size is a given $\delta_+>0$

$$\mathcal{H}_+ \;=\; \left\{ \delta = \delta_+, \sigma^2 > \mathbf{0} \right\}$$

Is that hard?



The variance/scale σ^2 is a nuisance parameter.

The variance/scale σ^2 is a nuisance parameter.

The nuisance is a **group** (here: positive scaling)

The variance/scale σ^2 is a nuisance parameter.

The nuisance is a **group** (here: positive scaling)

We can quotient it out

- Coarsen the data
- Work with orbits

Coarsening the data

Define the coarsening $(Z_i)_{i\geq 1}$ of the data $(X_i)_{i\geq 1}$ by

$$Z_i = \frac{X_i}{|X_1|}$$

Coarsening the data

Define the coarsening $(Z_i)_{i\geq 1}$ of the data $(X_i)_{i\geq 1}$ by

$$Z_i = \frac{X_i}{|X_1|}$$

Everyone in \mathcal{H}_0 agrees about the distribution of Z_1, Z_2, \ldots And everyone in \mathcal{H}_{δ_+} agrees about the distribution of Z_1, Z_2, \ldots

yet they don't agree with each other.

Coarsening the data

Define the coarsening $(Z_i)_{i\geq 1}$ of the data $(X_i)_{i\geq 1}$ by

$$Z_i = \frac{X_i}{|X_1|}$$

Everyone in \mathcal{H}_0 agrees about the distribution of Z_1, Z_2, \ldots And everyone in \mathcal{H}_{δ_+} agrees about the distribution of Z_1, Z_2, \ldots yet they don't agree with each other.

Both null and alternative collapse to a **point**. NB: both see $(Z_i)_{i>1}$ as dependent (not i.i.d.)!

Coarsened Likelihood Ratio

Let $p_0(Z^n)$ and $p_{\delta_+}(Z^n)$ be the density of the coarsening Z^n under the null and the alternative. Let's look at the process $(M_n)_{n\geq 0}$

$$M_n := \frac{p_{\delta_+}(Z^n)}{p_0(Z^n)}$$

Representations of the coarsened likelihood ratio

Let
$$S_n = \sum_{i=1}^n X_i$$
 and $V_n = \sum_{i=1}^n X_i^2$ and $R_n = \frac{S_n}{\sqrt{V_n}}$.

We have the Hypergeometric form

$$M_n = \frac{\Gamma\left(\frac{n}{2}\right) {}_{1}F_1\left(\frac{n}{2}; \frac{1}{2}; \frac{\delta_{+}^2 R_n^2}{2}\right) + \sqrt{2}\delta_{+}R_n\Gamma\left(\frac{n+1}{2}\right) {}_{1}F_1\left(\frac{n+1}{2}; \frac{3}{2}; \frac{\delta_{+}^2 R_n^2}{2}\right)}{\Gamma\left(\frac{n}{2}\right) e^{\frac{n}{2}\delta_{+}^2}}$$

the Pochhammer form

$$M_n = \frac{1}{\Gamma\left(\frac{n}{2}\right) e^{\frac{n}{2}\delta_+^2}} \sum_{k=0}^{\infty} \frac{\Gamma\left(\frac{k+n}{2}\right)}{k!} \left(\sqrt{2}\delta_+ R_n\right)^k$$

the Haar forms

$$M_n = \frac{\int P_{\mathcal{N}(\delta_+\sigma,\sigma^2)}(X^n) \frac{1}{\sigma} \, \mathrm{d}\sigma}{\int P_{\mathcal{N}(0,\sigma^2)}(X^n) \frac{1}{\sigma} \, \mathrm{d}\sigma} = \frac{2}{\Gamma\left(\frac{n}{2}\right) e^{\frac{n}{2}\delta_+^2}} \int_0^\infty e^{w\sqrt{2}\delta_+R_n - w^2} w^{n-1} \, \mathrm{d}w$$

the non-central Student-t form

$$M_n = \frac{P(T_n; n-1, \delta_+ \sqrt{n})}{P(T_n; n-1, 0)} \quad \text{where} \quad T_n = R_n \sqrt{\frac{n-1}{n-R_n^2}}$$

Martingale

Is the coarsened likelihood ratio a martingale for \mathcal{H}_0 ?

$$M_n = \frac{p_{\delta_+}(Z^n)}{p_0(Z^n)}$$

NB: for every $P \in \mathcal{H}_0$

$$\mathbb{E}_{P}\left[M_{n+1}|Z^{n}\right] = M_{n}$$

But

 $\mathbb{E}_{P}\left[M_{n+1}|X^{n}\right] \neq M_{n}$

e-variable

Recall our null of zero effect was

$$\mathcal{H}_0 = \{\delta = 0, \sigma^2 > 0\}.$$

Let's look at the much larger null of negative effect

$$\mathcal{H}_{\leq 0} \ \coloneqq \ \{\delta \leq 0, \sigma^2 > 0\}$$

e-variable

Recall our null of zero effect was

$$\mathcal{H}_0 = \{\delta = 0, \sigma^2 > 0\}.$$

Let's look at the much larger null of negative effect

$$\mathcal{H}_{\leq 0} \ \coloneqq \ \{\delta \leq 0, \sigma^2 > 0\}$$

 $[P\acute{e}r+24]$ show that for every $P \in \mathcal{H}_{\leq 0}$ and fixed *n*,

 $\mathbb{E}_{P}[M_{n}] \leq 1$

We say " M_n is an e-variable against $\mathcal{H}_{\leq 0}$ ".

The Engine of Safety for One-Sided Null

Definition

Random variable T has monotone likelihood ratio (MLR) if, whenever $\delta' \geq \delta$,

$$\frac{p_{\delta'}^T(t)}{p_{\delta}^T(t)}$$
 is increasing in t

The Engine of Safety for One-Sided Null

Definition

Random variable T has monotone likelihood ratio (MLR) if, whenever $\delta' \geq \delta$,

$$\frac{D_{\delta'}^{T}(t)}{D_{\delta}^{T}(t)}$$
 is increasing in t

Lemma

For MLR T, for all $\delta_{-} \leq 0 \leq \delta_{+}$,

$$\mathbb{E}_{\delta_{-}}\left[rac{p_{\delta_{+}}(\mathcal{T})}{p_{0}(\mathcal{T})}
ight] \leq 1.$$

Proof runs via stochastic dominance.

The Engine of Safety for One-Sided Null

Definition

Random variable T has monotone likelihood ratio (MLR) if, whenever $\delta' \geq \delta$,

$$\frac{D_{\delta'}^{T}(t)}{D_{\delta}^{T}(t)}$$
 is increasing in t

Lemma

For MLR T, for all $\delta_{-} \leq 0 \leq \delta_{+}$,

$$\mathbb{E}_{\delta_{-}}\left[rac{p_{\delta_{+}}(T)}{p_{0}(T)}
ight] \leq 1.$$

Proof runs via stochastic dominance.

In our case, the t-statistic T_n at sample size n has MLR. So $\frac{p_{\delta_+}(T_n)}{p_{\delta_0}(T_n)}$ is an e-variable for $\mathcal{H}_{\leq 0}$.

Summary so far

We have that M_n is a martingale against every $P \in \mathcal{H}_0$ on the filtration $(\sigma(Z^n))_{n \ge 0}$.

$$\mathbb{E}_{P_0}[M_{n+1}|Z^n] = M_n$$

So we can stop and reject \mathcal{H}_0 when $M_n \geq \frac{1}{\alpha}$.

Summary so far

We have that M_n is a martingale against every $P \in \mathcal{H}_0$ on the filtration $(\sigma(Z^n))_{n \ge 0}$.

$$\mathbb{E}_{P_0}[M_{n+1}|Z^n] = M_n$$

So we can stop and reject \mathcal{H}_0 when $M_n \geq \frac{1}{\alpha}$.

We get Type-1 error control by Ville's inequality: for every $P \in \mathcal{H}_0$:

$$P_0\left\{\exists n: M_n \geq \frac{1}{\alpha}\right\} \leq \alpha$$

Summary so far

We have that M_n is a martingale against every $P \in \mathcal{H}_0$ on the filtration $(\sigma(Z^n))_{n \ge 0}$.

$$\mathbb{E}_{P_0}[M_{n+1}|Z^n] = M_n$$

So we can stop and reject \mathcal{H}_0 when $M_n \geq \frac{1}{\alpha}$.

We get Type-1 error control by Ville's inequality: for every $P \in \mathcal{H}_0$:

$$P_0\left\{\exists n: M_n \geq \frac{1}{\alpha}\right\} \leq \alpha$$

And we stop at the right moment: for every $P \in \mathcal{H}_+$,

$$\mathbb{E}_{P}\left[\tau\right] \approx \frac{2\ln\frac{1}{\alpha}}{\ln(1+\delta_{+}^{2})} = \frac{\ln\frac{1}{\alpha}}{\mathsf{KL}\left(\mathcal{H}_{+}\|\mathcal{H}_{0}\right)}$$

Posing the Problem

Open problem

Recall the null of negative effect

$$\mathcal{H}_{\leq 0} := \{\delta \leq 0, \sigma^2 > 0\}.$$

Question

Is $(M_n)_{n\geq 0}$ a supermartingale against negative effect (i.e. for every $P \in \mathcal{H}_{\leq 0}$)?

Resolution

Monotone Likelihood Ratio

For

$$M_n = \frac{p_{\delta_+}(Z^n)}{p_0(Z^n)}$$

and $\delta_{-} \leq$ 0, we aim to show

$$\mathbb{E}_{\delta_{-}}\left[M_{n+1}|Z^{n}\right] \leq M_{n}$$

Monotone Likelihood Ratio

For

$$M_n = \frac{p_{\delta_+}(Z^n)}{p_0(Z^n)}$$

and $\delta_{-} \leq 0$, we aim to show

$$\mathbb{E}_{\delta_{-}}\left[M_{n+1}|Z^{n}\right] \leq M_{n}$$

Attempt 1: Fix Z^n . Then $\frac{M_{n+1}}{M_n} = \frac{p_{\delta_+}(Z_{n+1}|Z^n)}{p_0(Z_{n+1}|Z^n)}$. Does Z_{n+1} have the monotone likelihood ratio property under the conditional model $P_{\delta}(\cdot|Z^n)$?

Monotone Likelihood Ratio

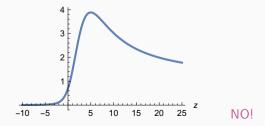
For

$$M_n = \frac{p_{\delta_+}(Z^n)}{p_0(Z^n)}$$

and $\delta_{-} \leq 0$, we aim to show

$$\mathbb{E}_{\delta_{-}}\left[M_{n+1}|Z^{n}\right] \leq M_{n}$$

Attempt 1: Fix Z^n . Then $\frac{M_{n+1}}{M_n} = \frac{p_{\delta_+}(Z_{n+1}|Z^n)}{p_0(Z_{n+1}|Z^n)}$. Does Z_{n+1} have the monotone likelihood ratio property under the conditional model $P_{\delta}(\cdot|Z^n)$?



Sufficiency to the Rescue

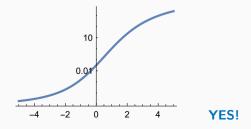
Recall that

$$M_n = \frac{P(T_n; n-1, \delta_+ \sqrt{n})}{P(T_n; n-1, 0)}$$

where T_n is the t-statistic. We then have

$$\frac{M_{n+1}}{M_n} = \frac{p_{\delta_+}(Z_{n+1}|Z^n)}{p_0(Z_{n+1}|Z^n)} \stackrel{\text{sufficiency}}{=} \frac{p_{\delta_+}(T_{n+1}|Z^n)}{p_0(T_{n+1}|Z^n)} \stackrel{\text{sufficiency}}{=} \frac{p_{\delta_+}(T_{n+1})}{p_0(T_{n+1})} \frac{p_0(Z^n)}{p_{\delta_+}(Z^n)}$$

and so the conditional likelihood ratio is increasing.



The general case

Theorem

Fix $\delta_0 \leq \delta_+$. Let $(T_n)_{n \in \mathbb{N}}$ be a sequence of sufficient statistics satisfying the monotone likelihood ratio property. Then the process $\left(\prod_{i=1}^n \frac{p_{\delta_i}^{T_i}(T_i|U^{i-1})}{p_{\delta_0}^{T_i}(T_i|U^{i-1})}\right)_{n \in \mathbb{N}}$ is identical to the likelihood ratio process $\left(\frac{p_{\delta_+}(U^n)}{p_{\delta_0}(U^n)}\right)_{n \in \mathbb{N}}$ and both are "test" (positive, starting at 1) supermartingales relative to the one-sided null $\mathcal{H}_{\leq 0}$.

Linear Regression

Linear Regression with Nuisance Covariates

Consider i.i.d. observations (X_i, Y_i, Z_i) from the linear regression model

 $Y_i = \delta \sigma X_i + \beta^{\mathsf{T}} Z_i + \sigma \varepsilon_i,$

where $\delta \in \mathbb{R}$, $\beta \in \mathbb{R}^d$ and $\sigma \in \mathbb{R}^+$ are the parameters, and $\varepsilon_1, \ldots, \varepsilon_n$ are i.i.d. $\mathcal{N}(0, 1)$. We aim to test the effect size δ . We treat the coefficients β and scale σ as nuisance.

$$\mathcal{H}_0 \;=\; \left\{ \delta = \mathsf{0}, \sigma^2 > \mathsf{0}, \beta \in \mathbb{R}^d \right\} \qquad \mathsf{vs} \qquad \mathcal{H}_+ \;=\; \left\{ \delta = \delta_+, \sigma^2 > \mathsf{0}, \beta \in \mathbb{R}^d \right\}.$$

In fact, here the nuisance is again a group (scaling and general linear).

We can quotient it out, e.g. by coarsening the labels Y^n to

$$U_n \coloneqq rac{oldsymbol{A}_n Y^n}{\|oldsymbol{A}_n Y^n\|} \in S^{n-d-1} \subseteq \mathbb{R}^{n-d}$$

where $\mathbf{A}_n^{\mathsf{T}} \mathbf{A}_n Y^n$ is residual of linear regression of labels Y^n onto nuisance covariates Z_1, \ldots, Z_n .

Linear Regression ctd

Let us define

$$T_n := \frac{\frac{b_n^1}{\|b_n\|} U_n}{\frac{1}{\sqrt{n-d-1}} \|P_n U_n\|}$$

where

$$b_n \coloneqq \boldsymbol{A}_n X^n \in \mathbb{R}^{n-d}$$
 and $\boldsymbol{P}_n \coloneqq \boldsymbol{I}_n - \frac{b_n b_n^T}{b_n^T b_n}$

Linear Regression ctd

Let us define

$$T_n := \frac{\frac{b_n^{\mathsf{T}}}{\|b_n\|} U_n}{\frac{1}{\sqrt{n-d-1}} \|\boldsymbol{P}_n U_n\|}$$

where

$$b_n \coloneqq \boldsymbol{A}_n X^n \in \mathbb{R}^{n-d}$$
 and $\boldsymbol{P}_n \coloneqq \boldsymbol{I}_n - \frac{b_n b_n^{\mathsf{T}}}{b_n^{\mathsf{T}} b_n}$

Then

- T_n is a sufficient statistic for the data U_1, U_2, \ldots, U_n .
- T_n has non-central Student-*t* distribution with n d 1 degrees of freedom and non-centrality parameter $\delta \|b_n\|$
- *T_n* has the MLR property

Linear Regression ctd

Let us define

$$T_n := \frac{\frac{b_n^1}{\|b_n\|} U_n}{\frac{1}{\sqrt{n-d-1}} \|P_n U_n\|}$$

where

$$b_n \coloneqq \boldsymbol{A}_n X^n \in \mathbb{R}^{n-d}$$
 and $\boldsymbol{P}_n \coloneqq \boldsymbol{I}_n - \frac{b_n b_n^{\mathsf{T}}}{b_n^{\mathsf{T}} b_n}$

Then

- T_n is a sufficient statistic for the data U_1, U_2, \ldots, U_n .
- T_n has non-central Student-*t* distribution with n d 1 degrees of freedom and non-centrality parameter $\delta \|b_n\|$
- *T_n* has the MLR property

So $M_n \coloneqq \frac{f_{\mathsf{T}(n-d-1,\delta_+ ||b_n||)}(T_n)}{f_{\mathsf{T}(n-d-1,0)}(T_n)}$ is a test supermartingale under the entire null $\mathcal{H}_{\leq 0}$.

Conclusion

- The t-test is a supermartingale after all
- Due the monotone likelihood ratio property of a sufficient statistic
- This upgrades to many cases: χ^2 , linear regression, \ldots
- Building block for all sorts of anytime-valid testing and inference

Conclusion

- The t-test is a supermartingale after all
- Due the monotone likelihood ratio property of a sufficient statistic
- This upgrades to many cases: χ^2 , linear regression, ...
- Building block for all sorts of anytime-valid testing and inference

Let's talk!

References i

- [GdHK24] P. D. Grünwald, R. de Heide, and W. M. Koolen. "Safe Testing". In: Journal of the Royal Statistical Society Series B: Statistical Methodology 86.5 (2024). With Discussion.
- [Pér+24] M. F. Pérez-Ortiz, T. Lardy, R. de Heide, and P. Grünwald. "E-Statistics, Group Invariance and Anytime Valid Testing". In: The Annals of Statistics 52.4 (2024).