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Warm up: point vs point

We want to do sequential hypothesis testing.
As an example, consider i.i.d. X1, X5, ... from either Ps or Py.
A sequential test at confidence o € (0, 1) is a stopping time 7 such that
e Safety: Py {7 < o0} < ..
e Power: Ep,[7] is small.
Lower bound: for any sequential test 7, sample complexity is at least Ep,[7] > RL(PATRY)

A great idea: consider the likelihood ratio-based sequential test

n
M, = Ps(X") and take 7 = inf¢n>0/M, > :
PO(Xn) (&%

As M, is a Py test martingale, Ville's inequality gives us safety: P {Eln M, > é} < a.

1
Wald’s equation gives us Ep,[7] ~ W
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Composite case

Now consider rejecting a composite null Hg with the help of a composite alternative ;. *

Idea: find a measure of evidence that behaves like a likelihood ratio.

Approach M, @ @
maxpey, P(X")
maxpe, P(X")

Classical statistics well-understood  hard to calibrate
asymptotics
le P(X™MYw (dP)

Sy P(X")wo(dP)

Bayesian approach symmetry no martingale
Sy, P(X")w1(dP)

Universal Inference
maxpe, P(X")

Ville (e-process)  twice conservative

GRO(W) e log-optimal fixed sample size n

The theory of e-variables aims to find better likelihood-ratio-like quantities.
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The birth of an open problem

[Regarding your evidence process for the t-test ]

(Lovely! What about it? )

[It is martingale against zero effect [GdHK?24] ]

[and e-variable against negative effect [Pér+24] ]

[But supermartingale against negative effect? ]

[Surely! Hold on . .. ]
— several months later —
[Not trivial, eh? j
[. ..only mild partial progress ... ]

— one eternity later —

[Ok, supermartingale after all. ]
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Simplest composite vs composite example

Consider data stream Xi, X», ...

We assume throughout that X; are i.i.d. N'(do,0?) for some effect size § and variance 2.

Aim: to disqualify the composite null of no effect
Ho = {6=0,0°>0}
with the help of the composite alternative that the effect size is a given §, > 0

Hy = {6=04,0>>0}



Is that hard?
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Coarsening the data

Define the coarsening (Z;)i>1 of the data (X;);>1 by

Xi

Z =
| X1

Everyone in Hy agrees about the distribution of 71, 25, ...
And everyone in Hs, agrees about the distribution of Z;, 25, ...

yet they don’t agree with each other.

Both null and alternative collapse to a point. NB: both see (Z;)i>1 as dependent (not i.i.d.)!



Coarsened Likelihood Ratio

Let po(Z") and ps, (Z") be the density of the coarsening Z” under the null and the alternative.

Let's look at the process (M,),>0
ps. (Z")

M, =
po(Z"™)




Representations of the coarsened likelihood ratio

Let S, =307, X; and Vi, = Y, X7 and R, = 22~

We have the Hypergeometric form
n n 52 R? @ n 82 R?
(8) 1R (33 5F) + VLRI (38 1R (2325 )
r(2) e

M, =

the Pochhammer form

1 & (k) ’
M, = . 2 (\65 R,,)
e 6
the Haar forms
Mn _ pr(iLro',a?)(Xn)%dU _ 2 . /OO eW\/§5+Rn7W2Wn71dW
[ pneon(Xm)gdo T (3)e% Jo
the non-central Student-t form
P(T,,n—1,0 -1
M, = ( ! +ﬁ) where Up = [’y n

P(Tnn—1,0) n—R?



Martingale

Is the coarsened likelihood ratio a martingale for Ho?

NB: for every P € Hy
Ep [Mn+1|zn] = M,

But
Ep [MualX7] # M,
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e-variable

Recall our null of zero effect was
Ho = {§=0,02>0}.
Let's look at the much larger null of negative effect

Heo = {0 <0,0% >0}

[Pér+24] show that for every P € H<q and fixed n,
IEP [Mn] < 1

We say “M, is an e-variable against H<o".
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Definition
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The Engine of Safety for One-Sided Null

L\ 7]

Definition
Random variable T has monotone likelihood ratio (MLR) if, whenever 6" > ¢,
T
p(;T,(t) is increasing in t
ps (t)
Lemma

For MLR T, for all 6_ <0< 6.,

Proof runs via stochastic dominance.

ps, (Thn)
Psg (Th)

In our case, the t-statistic T,, at sample size n has MLR. So is an e-variable for H<g.
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Summary so far

We have that M, is a martingale against every P € Hg on the filtration (c(Z"))s>o0.
IE:Do[Mn-‘r1|Zn] = M,

So we can stop and reject Hg when M, > é

We get Type-1 error control by Ville's inequality: for every P € Hy:
1
Posdn: M, > -7 < «
@

And we stop at the right moment: for every P € H,,

Ep[r] ~ 2Iné B Iné
PUL S @+ 62) ~ KL(H4|[Ho)




Posing the Problem




Open problem

Recall the null of negative effect

Heo = {0 < 0,02 > 0}.

Question

Is (Mp)n>0 a supermartingale against negative effect (i.e. for every P € H<()?



Resolution
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and 6_ < 0, we aim to show
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Monotone Likelihood Ratio

For
ps.(Z")

po(Z™)

M, =

and 6_ < 0, we aim to show
Eé, [Mn+1|Zn] S Mn

= n M1 _ Ps (Zn+112")

property under the conditional model Ps (-|Z")?

. Does Z,,;1 have the monotone likelihood ratio

NO!



Sufficiency to the Rescue

Recall that
P (Toin—1,8,.+/n)

M, =
P(Tyn—1,0)

where T, is the t-statistic. We then have

Mn+1 _ p5+ (ZIH—]. |ZI‘I) sufficiency p(s+ ( Tn+1 ‘Zﬂ) sufficiency p($+ ( Tn+1) PO(Zn)

M, po(Zos11Z")  po(Tw1lZ")  po(Tat1) ps,.(Z7)

and so the conditional likelihood ratio is increasing.

10

4 2 o0 2 4 YES!




The general case

Theorem
Fix 6o < 0. Let (T,)nen be a sequence of sufficient statistics satisfying the monotone
L . no P (TIUTY
likelihood ratio property. Then the process | []:_; W
Pso L Ti =

U o .
likelihood ratio process (%) and both are “test” (positive, starting at 1)
%o neN

supermartingales relative to the one-sided null H<g.

) is identical to the
neN



Linear Regression




Linear Regression with Nuisance Covariates

Consider i.i.d. observations (X;, Y;, Z;) from the linear regression model
Y = doXi+ BTZ + o¢y,

where § € R, 3 € RY and 0 € R* are the parameters, and ¢1,. .., ¢, are i.i.d. N(0,1).

We aim to test the effect size §. We treat the coefficients S and scale o as nuisance.

Ho = {6=0,0°>0,€R'} vs Hy = {§=04,0°>0,8€R}.



Result for Linear Regression

In fact, here the nuisance is again a group (scaling and general linear).
We can quotient it out, e.g. by coarsening the labels Y to

A,Y"

— = Sn—d—l C Rn—d
A Y|

Un

where ATA,Y" is residual of linear regression of labels Y onto nuisance covariates 73, ...



Linear Regression ctd

Let us define
bT U
llbal] =1

1P Un||

Uy = o
vVn—d—1

where

b,bT
u, n n—d L, n~n
b, = A X" R and P, = I,— bTb,
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Let us define
by

S %k
n --— 1
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€ an bﬁbn
Then
e T, is a sufficient statistic for the data Uy, Us, ..., U,.
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Linear Regression ctd

Let us define

by
S %k
n --— 1
Tia= |PaUsll
where b b
by = AX"€R"¢ d P, =l — 32
€ an bﬁbn
Then
e T, is a sufficient statistic for the data Uy, Us, ..., U,.

e T, has non-central Student-t distribution with n — d — 1 degrees of freedom and
non-centrality parameter 0| by||

e T, has the MLR property

Fr(n—d— (V) . . .
So M, = % is a test supermartingale under the entire null H<o.
T(n—d—1,0\'n <
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Conclusion

The t-test is a supermartingale after all

e Due the monotone likelihood ratio property of a sufficient statistic

This upgrades to many cases: x?, linear regression, . ..

Building block for all sorts of anytime-valid testing and inference

Let's talk!
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