
The t-test is a supermartingale after all

Wouter M. Koolen

Oberwolfach, March 28, 2025

CWI and University of Twente



Warm Thanks

Peter Grünwald



Menu

1. Introduction

2. Setup

3. Posing the Problem

4. Resolution

5. Linear Regression



Introduction



Warm up: point vs point

We want to do sequential hypothesis testing.

As an example, consider i.i.d. X1,X2, . . . from either Pδ or P0.

A sequential test at confidence α ∈ (0, 1) is a stopping time τ such that

• Safety: P0 {τ < ∞} ≤ α.

• Power: EPδ
[τ ] is small.

Lower bound: for any sequential test τ , sample complexity is at least EPδ
[τ ] ≥ ln 1

α

KL(Pδ∥P0)

A great idea: consider the likelihood ratio-based sequential test

Mn :=
Pδ(X

n)

P0(X n)
and take τ := inf

{
n ≥ 0

∣∣∣∣Mn ≥ 1

α

}
As Mn is a P0 test martingale, Ville’s inequality gives us safety: P0

{
∃n : Mn ≥ 1

α

}
≤ α.

Wald’s equation gives us EPδ
[τ ] ≈ ln 1

α

KL(Pδ∥P0)
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Composite case

Now consider rejecting a composite null H0 with the help of a composite alternative H1.

Idea: find a measure of evidence that behaves like a likelihood ratio.

Approach Mn

Classical statistics
maxP∈H1 P(X

n)

maxP∈H0 P(X
n)

well-understood

asymptotics

hard to calibrate

Bayesian approach

∫
H1

P(X n)w1(dP)∫
H0

P(X n)w0(dP)
symmetry no martingale

Universal Inference

∫
H1

P(X n)w1(dP)

maxP∈H0 P(X
n)

Ville (e-process) twice conservative

GRO(W) . . . log-optimal fixed sample size n

The theory of e-variables aims to find better likelihood-ratio-like quantities.
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The birth of an open problem

Regarding your evidence process for the t-test

Lovely! What about it?

It is martingale against zero effect [GdHK24]

and e-variable against negative effect [Pér+24]

But supermartingale against negative effect?

Surely! Hold on . . .

— several months later —

Not trivial, eh?

. . . only mild partial progress . . .

— one eternity later —

Ok, supermartingale after all.
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Setup



Simplest composite vs composite example

Consider data stream X1,X2, . . .

We assume throughout that Xi are i.i.d. N (δσ, σ2) for some effect size δ and variance σ2.

Aim: to disqualify the composite null of no effect

H0 =
{
δ = 0, σ2 > 0

}
with the help of the composite alternative that the effect size is a given δ+ > 0

H+ =
{
δ = δ+, σ

2 > 0
}
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Is that hard?



Nuisance

The variance/scale σ2 is a nuisance parameter.

The nuisance is a group (here: positive scaling)

We can quotient it out

• Coarsen the data

• Work with orbits
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Coarsening the data

Define the coarsening (Zi )i≥1 of the data (Xi )i≥1 by

Zi =
Xi

|X1|

Everyone in H0 agrees about the distribution of Z1,Z2, . . .

And everyone in Hδ+ agrees about the distribution of Z1,Z2, . . .

yet they don’t agree with each other.

Both null and alternative collapse to a point. NB: neither sees (Zi )i≥1 as i.i.d.
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Coarsened Likelihood Ratio

Let p0(Z
n) and pδ+(Z

n) be the density of the coarsening Z n under the null and the alternative.

Let’s look at the process (Mn)n≥0

Mn :=
pδ+(Z

n)

p0(Z n)



Representations of the coarsened likelihood ratio

Let Sn =
∑n

i=1 Xi and Vn =
∑n

i=1 X
2
i and Rn = Sn√

Vn
.

We have the Hypergeometric form

Mn =
Γ
(
n
2

)
1F1

(
n
2 ;

1
2 ;

δ2+R
2
n

2

)
+
√
2δ+RnΓ

(
n+1
2

)
1F1

(
n+1
2 ; 3

2 ;
δ2+R

2
n

2

)
Γ
(
n
2

)
e

n
2 δ

2
+

the Pochhammer form

Mn =
1

Γ
(
n
2

)
e

n
2 δ

2
+

∞∑
k=0

Γ
(
k+n
2

)
k!

(√
2δ+Rn

)k

the Haar forms

Mn =

∫
pN (δ+σ,σ2)(X

n) 1
σ dσ∫

pN (0,σ2)(X n) 1
σ dσ

=
2

Γ
(
n
2

)
e

n
2 δ

2
+

∫ ∞

0

ew
√
2δ+Rn−w2

wn−1 dw

the non-central Student-t form

Mn =
P
(
Tn; n − 1, δ+

√
n
)

P (Tn; n − 1, 0)
where Tn = Rn

√
n − 1

n − R2
n



Martingale

Is the coarsened likelihood ratio a martingale for H0?

Mn =
pδ+(Z

n)

p0(Z n)

NB: for every P ∈ H0

EP [Mn+1|Z n] = Mn

But

EP [Mn+1|X n] ̸= Mn



e-variable

Recall our null of zero effect was

H0 = {δ = 0, σ2 > 0}.

Let’s look at the much larger null of negative effect

H≤0 := {δ ≤ 0, σ2 > 0}

[Pér+24] show that for every P ∈ H≤0 and fixed n,

EP [Mn] ≤ 1

We say “Mn is an e-variable against H≤0”.
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The Engine of Safety for One-Sided Null

Definition

Random variable T has monotone likelihood ratio (MLR) if, whenever δ′ ≥ δ,

pTδ′(t)

pTδ (t)
is increasing in t

Lemma

For MLR T , for all δ− ≤ 0 ≤ δ+,

Eδ−

[
pδ+(T )

p0(T )

]
≤ 1.

Proof runs via stochastic dominance.

In our case, the t-statistic Tn at sample size n has MLR. So
pδ+ (Tn)

pδ0 (Tn)
is an e-variable for H≤0.
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Summary so far

We have that Mn is a martingale against every P ∈ H0 on the filtration (σ(Z n))n≥0.

EP0 [Mn+1|Z n] = Mn

So we can stop and reject H0 when Mn ≥ 1
α .

We get Type-1 error control by Ville’s inequality: for every P ∈ H0:

P0

{
∃n : Mn ≥ 1

α

}
≤ α

And we stop at the right moment: for every P ∈ H+,

EP [τ ] ≈
2 ln 1

α

ln(1 + δ2+)
=

ln 1
α

KL (H+∥H0)
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Posing the Problem



Open problem

Recall the null of negative effect

H≤0 := {δ ≤ 0, σ2 > 0}.

Question

Is (Mn)n≥0 a supermartingale against negative effect (i.e. for every P ∈ H≤0)?



Resolution



Monotone Likelihood Ratio

For

Mn =
pδ+(Z

n)

p0(Z n)

and δ− ≤ 0, we aim to show

Eδ− [Mn+1|Z n] ≤ Mn

Attempt 1: Fix Z n. Then Mn+1

Mn
=

pδ+ (Zn+1|Z n)

p0(Zn+1|Z n) . Does Zn+1 have the monotone likelihood ratio

property under the conditional model Pδ (·|Z n)?

NO!
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Sufficiency to the Rescue

Recall that

Mn =
P
(
Tn; n − 1, δ+

√
n
)

P (Tn; n − 1, 0)

where Tn is the t-statistic. We then have

Mn+1

Mn
=

pδ+(Zn+1|Z n)

p0(Zn+1|Z n)

sufficiency
=

pδ+(Tn+1|Z n)

p0(Tn+1|Z n)

sufficiency
=

pδ+(Tn+1)

p0(Tn+1)

p0(Z
n)

pδ+(Z
n)

and so the conditional likelihood ratio is increasing.
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The general case

Theorem

Fix δ0 ≤ δ+. Let (Tn)n∈N be a sequence of sufficient statistics satisfying the monotone

likelihood ratio property. Then the process

(∏n
i=1

p
Ti
δ+

(Ti |U i−1)

p
Ti
δ0
(Ti |U i−1)

)
n∈N

is identical to the

likelihood ratio process
(

pδ+ (Un)

pδ0
(Un)

)
n∈N

and both are “test” (positive, starting at 1)

supermartingales relative to the one-sided null H≤0.



Linear Regression



Linear Regression with Nuisance Covariates

Consider i.i.d. observations (Xi ,Yi ,Zi ) from the linear regression model

Yi = δσXi + β⊺Zi + σεi ,

where δ ∈ R, β ∈ Rd and σ ∈ R+ are the parameters, and ε1, . . . , εn are i.i.d. N (0, 1).

We aim to test the effect size δ. We treat the coefficients β and scale σ as nuisance.

H0 =
{
δ = 0, σ2 > 0, β ∈ Rd

}
vs H+ =

{
δ = δ+, σ

2 > 0, β ∈ Rd
}
.



Result for Linear Regression

In fact, here the nuisance is again a group (scaling and general linear).

We can quotient it out, e.g. by coarsening the labels Y n to

Un :=
AnY

n

∥AnY n∥
∈ Sn−1 ⊆ Rn

where A⊺
nAnY

n is residual of linear regression of labels Y n onto nuisance covariates Z1, . . . ,Zn.



Linear Regression ctd

Let us define

Tn :=

b⊺
n

∥bn∥Un

1√
n−1

∥PnUn∥

where

bn := AnX
n ∈ Rn and Pn := In −

bnb
⊺
n

b⊺nbn

Then

• Tn is a sufficient statistic for the data Un.

• Tn has non-central Student-t distribution with n − 1 degrees of freedom and

non-centrality parameter δ∥bn∥
• Tn has the MLR property

So Mn :=
fT(k−1,δ+∥bn∥)(Tn)

f
T(k−1,δ0∥bn∥)

(Tn)
is a test supermartingale under the entire null H≤0.
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Conclusion

• The t-test is a supermartingale after all

• Due the monotone likelihood ratio property of a sufficient statistic

• This upgrades to many cases: χ2, linear regression, . . .

• Building block for all sorts of anytime-valid testing and inference

Let’s talk!
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