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Two Questions



Q1: What do we know?
Q2: What should we do?



Q1: What do we know?
Q2: What should we do?

Philosophy = Mathematics/Statistics = Algorithms



Modern Machine Learning



Our Lives Will be Transformed

Recent progress in Machine Learning is amazing.

It has become useful ...

e in a spectrum of tasks: images, text, dialogue, programming, ...

Fast and furious.



can you help me generate an image of a professor in dutch
gown and cap on a red racing bicycle?

Here's the image of a professor in a Dutch academic gown and cap, riding a red racing bicycle. Let
me know if you'd like any tweaks!



can you make the gown black with a green bevel, and can you
make the bicycle more aero?

Here's the updated image with a black gown featuring a green bevel and a more aerodynamic red

racing bicycle. Let me know if you'd like any further refinements!



Can you make the gown in the style of the University of
Twente?

Here's the updated image with the gown in the style of the University of Twente. Let me know if

you need any further refinements!



How Does that Work

Data:
(X1, %1)5 - 5 (Xny V) n = internet

Model:
Y = f(X;01,...,0n) m = billion
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My own field will be the reason that my job will transform significantly in <5 years.
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Challenges

Many scientific and societal questions

Why does it work so well?

When and how does it fail?

Efficiency?

e Data ownership?

e Transparency? Accountability? Explainability? Fairness? Alignment?
Who benefits?



Today’s Question

After training on all available data ...7
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Today’s Question

After training on all available data ...7

Is there a way to improve further?

Yes! Do experiments to generate new datal



Q1l: What do we know?



Starting Point: Two Versions of Autonomous Driving Software




World Model

We assume each version has an unknown crash rate
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We assume each version has an unknown crash rate

@ /10.000

=3 21.00

Together these determine the best version on average, _==,.
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Learning the Best Version by Observing Driving Results
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Frequentist Confidence Intervals

At any point, what do we know?
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e Say the success rate is 3/4 and we sample
100 times

e then we will typically see a number of
successes in the blue centre (67 — 82)

e while a number of successes in either red
tail is weird
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Frequentist Confidence Intervals

At any point, what do we know?

e Say the success rate is 3/4 and we sample

.08k 100 times
e then we will typically see a number of
0.06 - successes in the blue centre (67 — 82)
e while a number of successes in either red
0.04 - .
tail is weird
0.02 - e Reversing the logic: if we see < 66
successes or > 83 successes, we learn that
0.00 the success rate is NOT 3/4.
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Bespoke Confidence Sequences
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How to create problem-aware confidence
sequences?
e Promising techniques

e GLRT
e martingales / e-variables

e Challenges
e Deviation inequalities (non-asymptotic)
e Computation



Q2: What should we do




Increased Realism: Different Environments

Versions



Updated World Model
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Known natural environment mix Unknown crash rates (@/10.000)
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Together these determine the best version on average, _=,.
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Learning the best Version by Exploring
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Why does Adaptive Exploration Help?
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What can Optimal Exploration Achieve?

At 0 = 5% confidence, need about 1 million samples:

161 171 104 82 44

21 12 7 7 2
I 59 30 20 117

46 21 9 5 3

These numbers depend on the unknown crash rates. Only way to match these is to learn
about them on the fly.



Efficiency Gain

e In my example, adaptive exploration reduces experiments by factor 3 (!) compared to
batch.
e Focus on discriminating better versions
e Not smart to drive with the natural mix of environments.



The Future

e Main challenges

e Optimal behaviour determined by unknown, non-convex saddle point
e Statistics, Optimisation

e The dream: automate strategy design



Personal Journey
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