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Two Questions



Q1: What do we know?

Q2: What should we do?
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Modern Machine Learning



Our Lives Will be Transformed

• Recent progress in Machine Learning is amazing.

• It has become useful . . .

• in a spectrum of tasks: images, text, dialogue, programming, . . .

• Fast and furious.









How Does that Work

Data:

(x1, y1), . . . , (xn, yn) n ≈ internet

Model:

Y = f (X ; θ1, . . . , θm) m ≈ billion



I am Excited

My own field will be the reason that my job will transform significantly in < 5 years.

And that is exciting / natural / good / interesting
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Challenges

Many scientific and societal questions

• Why does it work so well?

• When and how does it fail?

• Efficiency?

• Data ownership?

• Transparency? Accountability? Explainability? Fairness? Alignment?

• Who benefits?



Today’s Question

. . .

After training on all available data . . . ?

Is there a way to improve further?

Yes! Do experiments to generate new data!
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Q1: What do we know?



Starting Point: Two Versions of Autonomous Driving Software



World Model

We assume each version has an unknown crash rate
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Together these determine the best version on average, .
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Learning the Best Version by Observing Driving Results
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Frequentist Confidence Intervals

At any point, what do we know?

• Say the success rate is 3/4 and we sample

100 times

• then we will typically see a number of

successes in the blue centre (67 – 82)

• while a number of successes in either red

tail is weird

• Reversing the logic: if we see ≤ 66

successes or ≥ 83 successes, we learn that

the success rate is NOT 3/4.
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Bespoke Confidence Sequences

How to create problem-aware confidence

sequences?

• Promising techniques

• GLRT

• martingales / e-variables

• Challenges

• Deviation inequalities (non-asymptotic)

• Computation



Q2: What should we do



Increased Realism: Different Environments

Versions

Environments

Outcomes



Updated World Model

Known natural environment mix
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Why does Adaptive Exploration Help?



What can Optimal Exploration Achieve?

At δ = 5% confidence, need about 1 million samples:

×1000

161 171 104 82 44

21 12 7 7 2

77 59 30 20 117

46 21 9 5 3

These numbers depend on the unknown crash rates. Only way to match these is to learn

about them on the fly.



Efficiency Gain

• In my example, adaptive exploration reduces experiments by factor 3 (!) compared to

batch.

• Focus on discriminating better versions

• Not smart to drive with the natural mix of environments.



The Future

• Main challenges

• Optimal behaviour determined by unknown, non-convex saddle point

• Statistics, Optimisation

• The dream: automate strategy design



Personal Journey
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