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Neuroscience in one slide



Simplified/concrete/tractable form

Model for single biological neuron (Schmidt-Hieber, 2023): with U,U′ uniform

θk = θk−1 + αk

(
L(θk−1 +Uk ,Xk ,Yk)− L(θk−1 +U′

k ,Xk ,Yk)
)(

e−Uk − eUk
)
.

• Zeroth order: evaluates loss L(θk−1 +Uk ,Xk ,Yk), no derivatives

• Two-point scheme: for each data item Xk ,Yk evaluate loss of two parameters θk−1 +Uk

and θk−1 +U′
k
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Benchmark Task: Zeroth order

Linear Regression



Linear Regression

Model (θ⋆,P, σ2): well-specified linear regression with random design.

unknown true regression coefficient θ⋆ ∈ Rd

unknown covariate distribution P on Rd and

known noise level σ > 0.

• Covariates X1,X2, . . . are drawn i.i.d. from P.
• Response variables are Yk := X⊺

kθ
⋆ + ϵk with independent Gaussian noise ϵk ∼ N (0, σ2).

• Loss of parameter θ on data item X,Y is the square loss

L(θ,X,Y ) := (X⊺θ − Y )2

• Risk (expected loss) of parameter θ is

E
[
L(θ,X,Y )

]
= E

[
(X⊺(θ − θ⋆)− ϵ)2

]
= ∥θ − θ⋆∥2Q + σ2

where we write Q := E[XX⊺] ≻ 0 for the (uncentred) covariance matrix of the covariates.

• Excess risk of θ over risk minimiser θ⋆ is

∥θ − θ⋆∥2Q
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Interaction Protocol: Two-Point Zeroth-order Stochastic Optimization

For k = 1, 2, . . .

1. Learner picks two query points θ
(1)
k−1 and θ

(2)
k−1

2. Data item Xk ,Yk is drawn from linear regression model behind the scenes

3. Learner observes losses L(θ
(1)
k−1,Xk ,Yk) and L(θ

(2)
k−1,Xk ,Yk) of the two query points

4. Learner recommends evaluation point θk

NB: Learner has no access to data Xk ,Yk or gradient ∇θL(θ
(1)
k−1,Xk ,Yk), . . .

We are interested in the excess risk of the evaluation point θk as a function of time k.

The evaluation point θk is random due to random data X1,Y1, . . . (and randomised queries)

So we evaluate a strategy for Learner by its expected excess risk after k rounds

E
(θ

(1)
0 ,θ

(2)
0 ,X1,Y1)...(θ

(1)
k−1,θ

(2)
k−1,Xk ,Yk )

[
∥θk − θ⋆∥2Q

]
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Impact of the Query model for Linear Regression

If we query at θ, we see the scalar loss

L = (X⊺θ − Y )2 = (X⊺(θ − θ⋆)− ϵ)2

If further X ∼ P = N (0, I ) for simplicity, we have

X⊺(θ − θ⋆)− ϵ ∼ N
(
0, ∥θ − θ⋆∥2 + σ2

)
so that the loss is scaled chi-squared

L = (X⊺(θ − θ⋆)− ϵ)2 ∼
(
∥θ − θ⋆∥2 + σ2

)
χ2
1

Multiplicative noise. Very different from additive noise L ∼
(
∥θ − θ⋆∥2 + σ2

)
+N (0, const).
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How hard is this task?

Minimax lower bound for any two-point scheme Vk , θ̂.

Theorem

If d ≥ 3 and k ≥ d2, then,

inf
Vk ,θ̂

sup
θ⋆∈BR (0)

Eθ⋆,Vk

[
∥θ̂ − θ⋆∥2

]
≥ 1

162

(
1− 1√

2

)(
R2 ∧ d2

k
σ2

)
.

Minimax excess risk lower bound for non-adaptive two-point schemes

Theorem

If d ≥ 6, then for any k = 1, 2, . . .

inf
Vk∈Mk ,θ̂

sup
θ⋆∈BR (0)

Eθ⋆,Vk

[
∥θ̂ − θ⋆∥2

]
≥ 2−18

(
R2 ∧ d2

k
(R2 ∨ σ2)

)
.
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BNN meets Linear Regression



Slogan

For our combination of loss and update, (almost) everything is fully explicit linear/quadratic.



Connecting BNN to 2P-0O-StochOpt

We query at

θ
(1)
k−1 = θk−1 +Uk θ

(2)
k−1 = θk−1 +U′

k

and update using

θk = θk−1 + αk

(
(X⊺

k (θk−1 +Uk)− Yk)
2 − (X⊺

k (θk−1 +U′
k)− Yk)

2
)(

e−Uk − eUk
)

= θk−1 + αk

(
(X⊺

k (θk−1 − θ⋆ +Uk)− ϵk)
2 − (X⊺

k (θk−1 − θ⋆ +U′
k)− ϵk)

2
)(

e−Uk − eUk
)
.

So with δk := θk − θ⋆, we get the recurrence

δk = δk−1 + αk

(
(X⊺

k (δk−1 +Uk)− ϵk)
2 − (X⊺

k (δk−1 +U′
k)− ϵk)

2
)(

e−Uk − eUk
)
.

= δk−1 + αk

(
2(X⊺

kδk−1 − ϵk)X
⊺
k (U

′
k −Uk) + (X⊺

kUk)
2 − (X⊺

kU
′
k)

2
)(

e−Uk − eUk
)
.

=
(
I + 2αk

(
e−Uk − eUk

)
(U′

k −Uk)
⊺XkX

⊺
k

)
δk−1

+ αk

(
−2ϵkX

⊺
k (U

′
k −Uk) + (X⊺

kUk)
2 − (X⊺

kU
′
k)

2
)(

e−Uk − eUk
)
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Does it even make sense on average?

We expressed our update rule in Stochastic Approximation form

δk = (I − αkAk)δk−1 + αkbk

for i.i.d. random matrix Ak and vector bk given by

Ak := −2
(
e−Uk − eUk

)
(U′

k −Uk)
⊺XkX

⊺
k ,

bk :=
(
−2ϵkX

⊺
k (U

′
k −Uk) + (X⊺

kUk)
2 − (X⊺

kU
′
k)

2
)(

e−Uk − eUk
)
.

We have E[b] = 0 and E[A] = ηQ with constant η := 2E[
(
e−U − eU

)
U] depending on the

scale A of noise U.

In expectation, our update gives

Ek [δk ] =
(
I − αkηQ

)
δk−1

That is exactly gradient descent on the risk ∥δ∥2Q + σ2, with learning rate 1
2αkη.
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Case closed?

So the average iterate E[θk ] → θ⋆ converges to the risk minimiser. Exponentially fast.

The metric of interest is excess risk ∥δ∥2Q . Variance matters!

So let’s work on the expected excess risk after k rounds (whp bounds also interesting):

Ξk := E
[
∥δk∥2Q

]
where Q = E[XX⊺]

Can we get a recurrence for Ξk? Yes!
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Recurrence for excess risk

Recall our update rule is of the form

δk = (I − αkAk)δk−1 + αkbk

for i.i.d. random matrix Ak and vector bk , with E[A] = ηQ, and E[b] = E[A⊺Qb] = 0.

So the excess risk satisfies

Ξk = Ek [δ
⊺
kQδk ]

= Ek [((I − αkAk)δk−1 + αkbk)
⊺Q((I − αkAk)δk−1 + αkbk)]

= δ⊺k−1 Ek [(I − αkAk)
⊺Q(I − αkAk)] δk−1 + α2

k Ek [b
⊺
kQbk ]

= δ⊺k−1

{
(I − αkηQ)⊺Q(I − αkηQ) + α2

k Ek [(Ak − ηQ)⊺Q(Ak − ηQ)]
}
δk−1 + α2

k Ek [b
⊺
kQbk ]

≤
(
(1− αkηλmin(Q))2 + α2

kβ
)
Ξk−1 + α2

kγ

abbreviating β := λmax

(
Ek

[
Q−1/2(Ak − ηQ)⊺Q(Ak − ηQ)Q−1/2

])
and γ := Ek [b

⊺
kQbk ].
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δk = (I − αkAk)δk−1 + αkbk

for i.i.d. random matrix Ak and vector bk , with E[A] = ηQ, and E[b] = E[A⊺Qb] = 0.

So the excess risk satisfies

Ξk = Ek [δ
⊺
kQδk ]

= Ek [((I − αkAk)δk−1 + αkbk)
⊺Q((I − αkAk)δk−1 + αkbk)]

= δ⊺k−1 Ek [(I − αkAk)
⊺Q(I − αkAk)] δk−1 + α2

k Ek [b
⊺
kQbk ]

= δ⊺k−1

{
(I − αkηQ)⊺Q(I − αkηQ) + α2

k Ek [(Ak − ηQ)⊺Q(Ak − ηQ)]
}
δk−1 + α2

k Ek [b
⊺
kQbk ]

≤
(
(1− αkηλmin(Q))2 + α2

kβ
)
Ξk−1 + α2

kγ

abbreviating β := λmax

(
Ek

[
Q−1/2(Ak − ηQ)⊺Q(Ak − ηQ)Q−1/2

])
and γ := Ek [b

⊺
kQbk ].



Inspecting where we are

Our state of progress so far is

Ξk ≤
(
(1− αkηλmin(Q))2 + α2

kβ
)
Ξk−1 + α2

kγ

for fixed η, λmin(Q), β and γ. The question is how to tune αk . This is now a scalar problem.

Cancelling derivative reveals this bound is optimised in αk at

α∗
k =

ηλmin(Q)

η2λmin(Q)2 + β + γ
Ξk−1

and at that point we obtain

Ξk ≤
( β + γ

Ξk−1

η2λmin(Q)2 + β + γ
Ξk−1

)
Ξk−1
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Ξk−1

)
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Cute ODE upper bound

We can write our recurrence so far as a difference equation

Ξk − Ξk−1

Ξk−1
≤ − η2λmin(Q)2

η2λmin(Q)2 + β + γ
Ξk−1

and solve the corresponding differential equation with equality to find

Ξk

Ξ1
≤ y

W (yey+xk)
with x :=

η2λmin(Q)2

η2λmin(Q)2 + β
and y :=

γ/Ξ1

η2λmin(Q)2 + β

so that all in all the excess risk decays as Ξk
∼= Ξ1/k and the learning rate as α∗

k
∼= 1/k.



More precisely in terms of relevant problem-dependent constants

We arrive at excess risk bound

Theorem

Ξk ≤ 121κd2

2λmin(Q)

48σ2M2 + 107A2dM4

k + C

where κ = λmax(Q)
λmin(Q) is the condition number of Q, and Mp bounds the i th moment of each

entry of the covariate vector X ∼ P.

If A2d is at most of order σ2, this is d2/k . Matching lower bounds.



Reflections



To think about

• Is the optimal tuning αk
∼= 1/k biologically realistic?

• Learning rate αk needs to decay. What decides a new task in the brain?

• Optimal tuning for αk depends on zoo of unknowns. How are these estimated?

• Brutal tuning αk = c
C+k may result in risk rising to econst before 1/k decay kicks in.

• Is the noise rate A biologically small compared to σ/
√
d?

• Realism in the model

• More than one neuron

• Depth, architecture

• Other tasks and losses



Conclusion

We saw a simple model for spiking neurons inspired by biology.

We saw a concrete rendering of resulting update rule.

We interpreted it as a zeroth-order two-point iterative scheme.

We evaluated this scheme on a linear regression task.

We derived a rate for the excess risk, and proved that it matches lower bounds.

Let’s talk!
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