Can a biological neuron do linear regression?

Wouter M. Koolen
CWI and University of Twente

Bandit Theory Symposium, March 10, 2025

Warm Thanks

Johannes Schmidt-Hieber

Menu

- 1. Neuroscience in one slide
- 2. Benchmark Task: Zeroth order Linear Regression
- 3. BNN meets Linear Regression
- 4. Reflections

The Main Riddle

Neuroscience in one slide

Simplified/concrete/tractable form

Model for single biological neuron (Schmidt-Hieber, 2023): with U, U' uniform

$$\boldsymbol{\theta}_k = \boldsymbol{\theta}_{k-1} + \alpha_k \Big(L(\boldsymbol{\theta}_{k-1} + \boldsymbol{\mathsf{U}}_k, \boldsymbol{\mathsf{X}}_k, Y_k) - L(\boldsymbol{\theta}_{k-1} + \boldsymbol{\mathsf{U}}_k', \boldsymbol{\mathsf{X}}_k, Y_k) \Big) \big(e^{-\boldsymbol{\mathsf{U}}_k} - e^{\boldsymbol{\mathsf{U}}_k} \big).$$

Simplified/concrete/tractable form

Model for single biological neuron (Schmidt-Hieber, 2023): with \mathbf{U}, \mathbf{U}' uniform

$$\boldsymbol{\theta}_k = \boldsymbol{\theta}_{k-1} + \alpha_k \Big(L(\boldsymbol{\theta}_{k-1} + \boldsymbol{\mathsf{U}}_k, \boldsymbol{\mathsf{X}}_k, Y_k) - L(\boldsymbol{\theta}_{k-1} + \boldsymbol{\mathsf{U}}_k', \boldsymbol{\mathsf{X}}_k, Y_k) \Big) \big(e^{-\boldsymbol{\mathsf{U}}_k} - e^{\boldsymbol{\mathsf{U}}_k} \big).$$

- Zeroth order: evaluates loss $L(\theta_{k-1} + \mathbf{U}_k, \mathbf{X}_k, Y_k)$, no derivatives
- Two-point scheme: for each data item \mathbf{X}_k , Y_k evaluate loss of *two* parameters $\boldsymbol{\theta}_{k-1} + \mathbf{U}_k'$ and $\boldsymbol{\theta}_{k-1} + \mathbf{U}_k'$

Benchmark Task: Zeroth order

Linear Regression

Model $(\theta^{\star}, \mathbb{P}, \sigma^2)$: well-specified linear regression with random design.

Model $(\theta^{\star}, \mathbb{P}, \sigma^2)$: well-specified linear regression with random design.

unknown true regression coefficient $\theta^* \in \mathbb{R}^d$ unknown covariate distribution \mathbb{P} on \mathbb{R}^d and known noise level $\sigma > 0$.

Model $(\theta^{\star}, \mathbb{P}, \sigma^2)$: well-specified linear regression with random design.

unknown true regression coefficient $\theta^* \in \mathbb{R}^d$ unknown covariate distribution \mathbb{P} on \mathbb{R}^d and known noise level $\sigma > 0$.

• Covariates X_1, X_2, \ldots are drawn i.i.d. from \mathbb{P} .

Model $(\theta^{\star}, \mathbb{P}, \sigma^2)$: well-specified linear regression with random design.

unknown true regression coefficient $\theta^* \in \mathbb{R}^d$ unknown covariate distribution \mathbb{P} on \mathbb{R}^d and known noise level $\sigma > 0$.

- Covariates X_1, X_2, \ldots are drawn i.i.d. from \mathbb{P} .
- Response variables are $Y_k := \mathbf{X}_k^{\mathsf{T}} \boldsymbol{\theta}^* + \epsilon_k$ with independent Gaussian noise $\epsilon_k \sim \mathcal{N}(0, \sigma^2)$.

Model $(\theta^{\star}, \mathbb{P}, \sigma^2)$: well-specified linear regression with random design.

unknown true regression coefficient $\theta^* \in \mathbb{R}^d$ unknown covariate distribution \mathbb{P} on \mathbb{R}^d and known noise level $\sigma > 0$.

- Covariates X_1, X_2, \ldots are drawn i.i.d. from \mathbb{P} .
- Response variables are $Y_k := \mathbf{X}_k^\mathsf{T} \boldsymbol{\theta}^* + \epsilon_k$ with independent Gaussian noise $\epsilon_k \sim \mathcal{N}(0, \sigma^2)$.
- Loss of parameter θ on data item **X**, Y is the square loss

$$L(\theta, \mathbf{X}, Y) := (\mathbf{X}^{\mathsf{T}}\theta - Y)^2$$

Model $(\theta^{\star}, \mathbb{P}, \sigma^2)$: well-specified linear regression with random design.

unknown true regression coefficient $\theta^* \in \mathbb{R}^d$ unknown covariate distribution \mathbb{P} on \mathbb{R}^d and known noise level $\sigma > 0$.

- Covariates X_1, X_2, \ldots are drawn i.i.d. from \mathbb{P} .
- Response variables are $Y_k := \mathbf{X}_k^\mathsf{T} \boldsymbol{\theta}^* + \epsilon_k$ with independent Gaussian noise $\epsilon_k \sim \mathcal{N}(0, \sigma^2)$.
- Loss of parameter θ on data item X, Y is the square loss

$$L(\theta, \mathbf{X}, Y) := (\mathbf{X}^{\mathsf{T}}\theta - Y)^2$$

• Risk (expected loss) of parameter θ is

$$\mathbb{E}[L(\boldsymbol{\theta}, \mathbf{X}, Y)] = \mathbb{E}[(\mathbf{X}^{\mathsf{T}}(\boldsymbol{\theta} - \boldsymbol{\theta}^{\star}) - \epsilon)^{2}] = \|\boldsymbol{\theta} - \boldsymbol{\theta}^{\star}\|_{Q}^{2} + \sigma^{2}$$

where we write $Q := \mathbb{E}[\mathbf{X}\mathbf{X}^{\mathsf{T}}] \succ 0$ for the (uncentred) covariance matrix of the covariates.

Model $(\theta^{\star}, \mathbb{P}, \sigma^2)$: well-specified linear regression with random design.

unknown true regression coefficient $\theta^* \in \mathbb{R}^d$ unknown covariate distribution \mathbb{P} on \mathbb{R}^d and known noise level $\sigma > 0$.

- Covariates X_1, X_2, \ldots are drawn i.i.d. from \mathbb{P} .
- Response variables are $Y_k := \mathbf{X}_k^\mathsf{T} \boldsymbol{\theta}^* + \epsilon_k$ with independent Gaussian noise $\epsilon_k \sim \mathcal{N}(0, \sigma^2)$.
- Loss of parameter θ on data item X, Y is the square loss

$$L(\theta, \mathbf{X}, Y) := (\mathbf{X}^{\mathsf{T}}\theta - Y)^2$$

• Risk (expected loss) of parameter θ is

$$\mathbb{E}[L(\boldsymbol{\theta}, \mathbf{X}, Y)] = \mathbb{E}[(\mathbf{X}^{\mathsf{T}}(\boldsymbol{\theta} - \boldsymbol{\theta}^{\star}) - \epsilon)^{2}] = \|\boldsymbol{\theta} - \boldsymbol{\theta}^{\star}\|_{Q}^{2} + \sigma^{2}$$

where we write $Q := \mathbb{E}[XX^{T}] \succ 0$ for the (uncentred) covariance matrix of the covariates.

ullet Excess risk of $oldsymbol{ heta}$ over risk minimiser $oldsymbol{ heta}^{\star}$ is

$$\|\boldsymbol{\theta} - \boldsymbol{\theta}^{\star}\|_{\mathcal{Q}}^2$$

For k = 1, 2, ...

- 1. Learner picks *two* query points $\theta_{k-1}^{(1)}$ and $\theta_{k-1}^{(2)}$
- 2. Data item X_k , Y_k is drawn from linear regression model behind the scenes
- 3. Learner observes losses $L(\theta_{k-1}^{(1)}, \mathbf{X}_k, Y_k)$ and $L(\theta_{k-1}^{(2)}, \mathbf{X}_k, Y_k)$ of the two query points
- 4. Learner recommends evaluation point $oldsymbol{ heta}_k$

For k = 1, 2, ...

- 1. Learner picks *two* query points $\theta_{k-1}^{(1)}$ and $\theta_{k-1}^{(2)}$
- 2. Data item X_k , Y_k is drawn from linear regression model behind the scenes
- 3. Learner observes losses $L(\theta_{k-1}^{(1)}, \mathbf{X}_k, Y_k)$ and $L(\theta_{k-1}^{(2)}, \mathbf{X}_k, Y_k)$ of the two query points
- 4. Learner recommends evaluation point θ_k

NB: Learner has **no access** to data \mathbf{X}_k , Y_k or gradient $\nabla_{\theta} L(\theta_{k-1}^{(1)}, \mathbf{X}_k, Y_k), \dots$

For k = 1, 2, ...

- 1. Learner picks *two* query points $heta_{k-1}^{(1)}$ and $heta_{k-1}^{(2)}$
- 2. Data item X_k, Y_k is drawn from linear regression model behind the scenes
- 3. Learner observes losses $L(\theta_{k-1}^{(1)}, \mathbf{X}_k, Y_k)$ and $L(\theta_{k-1}^{(2)}, \mathbf{X}_k, Y_k)$ of the two query points
- 4. Learner recommends evaluation point $heta_k$

NB: Learner has **no access** to data \mathbf{X}_k , Y_k or gradient $\nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_{k-1}^{(1)}, \mathbf{X}_k, Y_k), \dots$

We are interested in the excess risk of the evaluation point θ_k as a function of time k.

For k = 1, 2, ...

- 1. Learner picks *two* query points $\theta_{k-1}^{(1)}$ and $\theta_{k-1}^{(2)}$
- 2. Data item X_k , Y_k is drawn from linear regression model behind the scenes
- 3. Learner observes losses $L(\theta_{k-1}^{(1)}, \mathbf{X}_k, Y_k)$ and $L(\theta_{k-1}^{(2)}, \mathbf{X}_k, Y_k)$ of the two query points
- 4. Learner recommends evaluation point θ_k

NB: Learner has **no access** to data \mathbf{X}_k , Y_k or gradient $\nabla_{\theta} L(\theta_{k-1}^{(1)}, \mathbf{X}_k, Y_k), \dots$

We are interested in the excess risk of the evaluation point θ_k as a function of time k.

The evaluation point θ_k is random due to random data X_1, Y_1, \ldots (and randomised queries) So we evaluate a strategy for Learner by its expected excess risk after k rounds

$$\mathbb{E}_{(\boldsymbol{\theta}_{0}^{(1)}, \boldsymbol{\theta}_{0}^{(2)}, \mathbf{X}_{1}, Y_{1}) \dots (\boldsymbol{\theta}_{k-1}^{(1)}, \boldsymbol{\theta}_{k-1}^{(2)}, \mathbf{X}_{k}, Y_{k})} \left[\|\boldsymbol{\theta}_{k} - \boldsymbol{\theta}^{\star}\|_{Q}^{2} \right]$$

Impact of the Query model for Linear Regression

If we query at θ , we see the scalar loss

$$L = (\mathbf{X}^{\mathsf{T}} \boldsymbol{\theta} - Y)^2 = (\mathbf{X}^{\mathsf{T}} (\boldsymbol{\theta} - \boldsymbol{\theta}^{\star}) - \epsilon)^2$$

Impact of the Query model for Linear Regression

If we query at θ , we see the scalar loss

$$L = (\mathbf{X}^{\mathsf{T}} \boldsymbol{\theta} - Y)^2 = (\mathbf{X}^{\mathsf{T}} (\boldsymbol{\theta} - \boldsymbol{\theta}^{\star}) - \epsilon)^2$$

If further $\mathbf{X} \sim \mathbb{P} = \mathcal{N}(0, I)$ for simplicity, we have

$$\mathbf{X}^{\intercal}(\boldsymbol{\theta} - \boldsymbol{\theta}^{\star}) - \epsilon \quad \sim \mathcal{N}\left(0, \|\boldsymbol{\theta} - \boldsymbol{\theta}^{\star}\|^{2} + \sigma^{2}\right)$$

so that the loss is scaled chi-squared

$$L = (\mathbf{X}^{\mathsf{T}}(\boldsymbol{\theta} - \boldsymbol{\theta}^{\star}) - \epsilon)^{2} \sim (\|\boldsymbol{\theta} - \boldsymbol{\theta}^{\star}\|^{2} + \sigma^{2}) \chi_{1}^{2}$$

Impact of the Query model for Linear Regression

If we query at θ , we see the scalar loss

$$L = (\mathbf{X}^{\mathsf{T}} \boldsymbol{\theta} - Y)^2 = (\mathbf{X}^{\mathsf{T}} (\boldsymbol{\theta} - \boldsymbol{\theta}^*) - \epsilon)^2$$

If further $\mathbf{X} \sim \mathbb{P} = \mathcal{N}(0, I)$ for simplicity, we have

$$\mathbf{X}^{\intercal}(\mathbf{ heta} - \mathbf{ heta}^{\star}) - \epsilon \quad \sim \ \mathcal{N}\left(0, \|\mathbf{ heta} - \mathbf{ heta}^{\star}\|^2 + \sigma^2\right)$$

so that the loss is scaled chi-squared

$$L = (\mathbf{X}^{\mathsf{T}}(\boldsymbol{\theta} - \boldsymbol{\theta}^{\star}) - \epsilon)^{2} \sim (\|\boldsymbol{\theta} - \boldsymbol{\theta}^{\star}\|^{2} + \sigma^{2}) \chi_{1}^{2}$$

Multiplicative noise. Very different from additive noise $L \sim \left(\|\boldsymbol{\theta} - \boldsymbol{\theta}^\star\|^2 + \sigma^2\right) + \mathcal{N}(0, \text{const})$.

How hard is this task?

Minimax lower bound for any two-point scheme $\mathcal{V}_k, \widehat{\theta}$.

Theorem

If d > 3 and $k > d^2$, then.

$$\inf_{\mathcal{V}_k,\widehat{\boldsymbol{\theta}}} \sup_{\boldsymbol{\theta}^\star \in B_R(\mathbf{0})} \; \mathbb{E}_{\boldsymbol{\theta}^\star,\mathcal{V}_k} \; \left[\|\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^\star\|^2 \right] \geq \frac{1}{162} \Big(1 - \frac{1}{\sqrt{2}} \Big) \bigg(R^2 \wedge \frac{d^2}{k} \sigma^2 \bigg).$$

How hard is this task?

Minimax lower bound for any two-point scheme $\mathcal{V}_k, \widehat{\boldsymbol{\theta}}$.

Theorem

If $d \ge 3$ and $k \ge d^2$, then,

$$\inf_{\mathcal{V}_k,\widehat{\boldsymbol{\theta}}} \sup_{\boldsymbol{\theta}^\star \in B_R(\mathbf{0})} \; \mathbb{E}_{\boldsymbol{\theta}^\star,\mathcal{V}_k} \; \left[\| \widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^\star \|^2 \right] \geq \frac{1}{162} \Big(1 - \frac{1}{\sqrt{2}} \Big) \bigg(R^2 \wedge \frac{d^2}{k} \sigma^2 \bigg).$$

Minimax excess risk lower bound for non-adaptive two-point schemes

Theorem

If $d \ge 6$, then for any k = 1, 2, ...

$$\inf_{\mathcal{V}_k \in \mathcal{M}_k, \widehat{\boldsymbol{\theta}}} \sup_{\boldsymbol{\theta}^\star \in \mathcal{B}_R(0)} \; \mathbb{E}_{\boldsymbol{\theta}^\star, \mathcal{V}_k} \; \left[\| \widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^\star \|^2 \right] \geq 2^{-18} \bigg(R^2 \wedge \frac{d^2}{k} (R^2 \vee \sigma^2) \bigg).$$

BNN meets Linear Regression

SI	ogan
	For our combination of loss and update, (almost) everything is fully explicit linear/quadratic.

Connecting BNN to 2P-0O-StochOpt

We query at

$$\boldsymbol{\theta}_{k-1}^{(1)} = \boldsymbol{\theta}_{k-1} + \mathbf{U}_k$$

$$\boldsymbol{ heta}_{k-1}^{(2)} = \boldsymbol{ heta}_{k-1} + \mathbf{U}_k'$$

Connecting BNN to 2P-0O-StochOpt

We query at

$$heta_{k-1}^{(1)} = heta_{k-1} + \mathsf{U}_k \qquad \qquad heta_{k-1}^{(2)} = heta_{k-1} + \mathsf{U}_k'$$

and update using

$$\theta_k = \theta_{k-1} + \alpha_k \Big((\mathbf{X}_k^{\mathsf{T}} (\theta_{k-1} + \mathbf{U}_k) - Y_k)^2 - (\mathbf{X}_k^{\mathsf{T}} (\theta_{k-1} + \mathbf{U}_k') - Y_k)^2 \Big) (e^{-\mathbf{U}_k} - e^{\mathbf{U}_k})$$

$$= \theta_{k-1} + \alpha_k \Big((\mathbf{X}_k^{\mathsf{T}} (\theta_{k-1} - \theta^* + \mathbf{U}_k) - \epsilon_k)^2 - (\mathbf{X}_k^{\mathsf{T}} (\theta_{k-1} - \theta^* + \mathbf{U}_k') - \epsilon_k)^2 \Big) (e^{-\mathbf{U}_k} - e^{\mathbf{U}_k}).$$

Connecting BNN to 2P-0O-StochOpt

We query at

$$\theta_{k-1}^{(1)} = \theta_{k-1} + \mathbf{U}_k \qquad \qquad \theta_{k-1}^{(2)} = \theta_{k-1} + \mathbf{U}_k'$$

and update using

$$\theta_{k} = \theta_{k-1} + \alpha_{k} \Big((\mathbf{X}_{k}^{\mathsf{T}} (\theta_{k-1} + \mathbf{U}_{k}) - Y_{k})^{2} - (\mathbf{X}_{k}^{\mathsf{T}} (\theta_{k-1} + \mathbf{U}_{k}') - Y_{k})^{2} \Big) (e^{-\mathbf{U}_{k}} - e^{\mathbf{U}_{k}})$$

$$= \theta_{k-1} + \alpha_{k} \Big((\mathbf{X}_{k}^{\mathsf{T}} (\theta_{k-1} - \theta^{*} + \mathbf{U}_{k}) - \epsilon_{k})^{2} - (\mathbf{X}_{k}^{\mathsf{T}} (\theta_{k-1} - \theta^{*} + \mathbf{U}_{k}') - \epsilon_{k})^{2} \Big) (e^{-\mathbf{U}_{k}} - e^{\mathbf{U}_{k}}).$$

So with $\delta_k := \theta_k - \theta^*$, we get the recurrence

$$\begin{split} \boldsymbol{\delta}_{k} &= \boldsymbol{\delta}_{k-1} + \alpha_{k} \Big((\mathbf{X}_{k}^{\mathsf{T}} (\boldsymbol{\delta}_{k-1} + \mathbf{U}_{k}) - \boldsymbol{\epsilon}_{k})^{2} - (\mathbf{X}_{k}^{\mathsf{T}} (\boldsymbol{\delta}_{k-1} + \mathbf{U}_{k}') - \boldsymbol{\epsilon}_{k})^{2} \Big) (e^{-\mathbf{U}_{k}} - e^{\mathbf{U}_{k}}). \\ &= \boldsymbol{\delta}_{k-1} + \alpha_{k} \Big(2(\mathbf{X}_{k}^{\mathsf{T}} \boldsymbol{\delta}_{k-1} - \boldsymbol{\epsilon}_{k}) \mathbf{X}_{k}^{\mathsf{T}} (\mathbf{U}_{k}' - \mathbf{U}_{k}) + (\mathbf{X}_{k}^{\mathsf{T}} \mathbf{U}_{k})^{2} - (\mathbf{X}_{k}^{\mathsf{T}} \mathbf{U}_{k}')^{2} \Big) (e^{-\mathbf{U}_{k}} - e^{\mathbf{U}_{k}}). \\ &= \Big(I + 2\alpha_{k} \Big(e^{-\mathbf{U}_{k}} - e^{\mathbf{U}_{k}} \Big) (\mathbf{U}_{k}' - \mathbf{U}_{k})^{\mathsf{T}} \mathbf{X}_{k} \mathbf{X}_{k}^{\mathsf{T}} \Big) \boldsymbol{\delta}_{k-1} \\ &+ \alpha_{k} \Big(-2\boldsymbol{\epsilon}_{k} \mathbf{X}_{k}^{\mathsf{T}} (\mathbf{U}_{k}' - \mathbf{U}_{k}) + (\mathbf{X}_{k}^{\mathsf{T}} \mathbf{U}_{k})^{2} - (\mathbf{X}_{k}^{\mathsf{T}} \mathbf{U}_{k}')^{2} \Big) (e^{-\mathbf{U}_{k}} - e^{\mathbf{U}_{k}}) \end{split}$$

Does it even make sense on average?

We expressed our update rule in Stochastic Approximation form

$$\boldsymbol{\delta}_k = (I - \alpha_k \mathbf{A}_k) \boldsymbol{\delta}_{k-1} + \alpha_k \mathbf{b}_k$$

for i.i.d. random matrix \mathbf{A}_k and vector \mathbf{b}_k given by

$$\begin{split} \mathbf{A}_k &\coloneqq -2 \big(e^{-\mathbf{U}_k} - e^{\mathbf{U}_k} \big) (\mathbf{U}_k' - \mathbf{U}_k)^\mathsf{T} \mathbf{X}_k \mathbf{X}_k^\mathsf{T}, \\ \mathbf{b}_k &\coloneqq \Big(-2 \epsilon_k \mathbf{X}_k^\mathsf{T} (\mathbf{U}_k' - \mathbf{U}_k) + (\mathbf{X}_k^\mathsf{T} \mathbf{U}_k)^2 - (\mathbf{X}_k^\mathsf{T} \mathbf{U}_k')^2 \Big) \big(e^{-\mathbf{U}_k} - e^{\mathbf{U}_k} \big). \end{split}$$

Does it even make sense on average?

We expressed our update rule in Stochastic Approximation form

$$\boldsymbol{\delta}_k = (I - \alpha_k \mathbf{A}_k) \boldsymbol{\delta}_{k-1} + \alpha_k \mathbf{b}_k$$

for i.i.d. random matrix \mathbf{A}_k and vector \mathbf{b}_k given by

$$\begin{split} \mathbf{A}_k \; &\coloneqq \; -2 \big(e^{-\mathbf{U}_k} - e^{\mathbf{U}_k} \big) (\mathbf{U}_k' - \mathbf{U}_k)^\mathsf{T} \mathbf{X}_k \mathbf{X}_k^\mathsf{T}, \\ \mathbf{b}_k \; &\coloneqq \; \Big(-2 \epsilon_k \mathbf{X}_k^\mathsf{T} (\mathbf{U}_k' - \mathbf{U}_k) + (\mathbf{X}_k^\mathsf{T} \mathbf{U}_k)^2 - (\mathbf{X}_k^\mathsf{T} \mathbf{U}_k')^2 \Big) \big(e^{-\mathbf{U}_k} - e^{\mathbf{U}_k} \big). \end{split}$$

We have $\mathbb{E}[\mathbf{b}] = 0$ and $\mathbb{E}[\mathbf{A}] = \eta Q$ with constant $\eta := 2 \mathbb{E}[(e^{-U} - e^U)U]$ depending on the scale A of noise \mathbf{U} .

In expectation, our update gives

$$\mathbb{E}_{k}[\boldsymbol{\delta}_{k}] = (I - \alpha_{k} \eta Q) \boldsymbol{\delta}_{k-1}$$

That is **exactly** gradient descent on the **risk** $\|\boldsymbol{\delta}\|_{Q}^{2} + \sigma^{2}$, with learning rate $\frac{1}{2}\alpha_{k}\eta$.

Case closed?

So the average iterate $\mathbb{E}[heta_k] o heta^\star$ converges to the risk minimiser. Exponentially fast.

Case closed?

So the average iterate $\mathbb{E}[heta_k] o heta^\star$ converges to the risk minimiser. Exponentially fast.

The metric of interest is excess risk $\|\delta\|_Q^2$. Variance matters!

Case closed?

So the average iterate $\mathbb{E}[heta_k] o heta^\star$ converges to the risk minimiser. Exponentially fast.

The metric of interest is excess risk $\|\delta\|_Q^2$. Variance matters!

So let's work on the expected excess risk after k rounds (whp bounds also interesting):

$$\Xi_k \coloneqq \mathbb{E}\left[\left\|\delta_k\right\|_Q^2\right] \quad ext{where} \quad Q = \mathbb{E}[\mathsf{XX}^\intercal]$$

Can we get a recurrence for Ξ_k ? Yes!

Recurrence for excess risk

Recall our update rule is of the form

$$\boldsymbol{\delta}_{k} = (I - \alpha_{k} \mathbf{A}_{k}) \boldsymbol{\delta}_{k-1} + \alpha_{k} \mathbf{b}_{k}$$

for i.i.d. random matrix \mathbf{A}_k and vector \mathbf{b}_k , with $\mathbb{E}[\mathbf{A}] = \eta Q$, and $\mathbb{E}[\mathbf{b}] = \mathbb{E}[\mathbf{A}^\intercal Q \mathbf{b}] = 0$.

Recurrence for excess risk

Recall our update rule is of the form

$$\delta_k = (I - \alpha_k \mathbf{A}_k) \delta_{k-1} + \alpha_k \mathbf{b}_k$$

for i.i.d. random matrix \mathbf{A}_k and vector \mathbf{b}_k , with $\mathbb{E}[\mathbf{A}] = \eta Q$, and $\mathbb{E}[\mathbf{b}] = \mathbb{E}[\mathbf{A}^{\mathsf{T}}Q\mathbf{b}] = 0$.

So the excess risk satisfies

$$\begin{split} & \Xi_{k} = \mathbb{E}_{k} \left[\delta_{k}^{\mathsf{T}} Q \delta_{k} \right] \\ & = \mathbb{E}_{k} \left[\left((I - \alpha_{k} \mathbf{A}_{k}) \delta_{k-1} + \alpha_{k} \mathbf{b}_{k} \right)^{\mathsf{T}} Q \left((I - \alpha_{k} \mathbf{A}_{k}) \delta_{k-1} + \alpha_{k} \mathbf{b}_{k} \right) \right] \\ & = \delta_{k-1}^{\mathsf{T}} \mathbb{E}_{k} \left[(I - \alpha_{k} \mathbf{A}_{k})^{\mathsf{T}} Q (I - \alpha_{k} \mathbf{A}_{k}) \right] \delta_{k-1} + \alpha_{k}^{2} \mathbb{E}_{k} \left[\mathbf{b}_{k}^{\mathsf{T}} Q \mathbf{b}_{k} \right] \\ & = \delta_{k-1}^{\mathsf{T}} \left\{ (I - \alpha_{k} \eta Q)^{\mathsf{T}} Q (I - \alpha_{k} \eta Q) + \alpha_{k}^{2} \mathbb{E}_{k} \left[(\mathbf{A}_{k} - \eta Q)^{\mathsf{T}} Q (\mathbf{A}_{k} - \eta Q) \right] \right\} \delta_{k-1} + \alpha_{k}^{2} \mathbb{E}_{k} \left[\mathbf{b}_{k}^{\mathsf{T}} Q \mathbf{b}_{k} \right] \\ & \leq \left((1 - \alpha_{k} \eta \lambda_{\min}(Q))^{2} + \alpha_{k}^{2} \beta \right) \Xi_{k-1} + \alpha_{k}^{2} \gamma \end{split}$$

abbreviating $\beta \coloneqq \lambda_{\max} \left(\mathbb{E}_k \left[Q^{-1/2} (\mathbf{A}_k - \eta Q)^\intercal Q (\mathbf{A}_k - \eta Q) Q^{-1/2} \right] \right)$ and $\gamma \coloneqq \mathbb{E}_k \left[\mathbf{b}_k^\intercal Q \mathbf{b}_k \right]$.

Inspecting where we are

Our state of progress so far is

$$\Xi_k \leq \left((1 - \alpha_k \eta \lambda_{\min}(Q))^2 + \alpha_k^2 \beta \right) \Xi_{k-1} + \alpha_k^2 \gamma$$

for fixed η , $\lambda_{\min}(Q)$, β and γ . The question is how to tune α_k . This is now a scalar problem.

Inspecting where we are

Our state of progress so far is

$$\Xi_k \leq \left((1 - \alpha_k \eta \lambda_{\min}(Q))^2 + \alpha_k^2 \beta \right) \Xi_{k-1} + \alpha_k^2 \gamma$$

for fixed η , $\lambda_{\min}(Q)$, β and γ . The question is how to tune α_k . This is now a scalar problem.

Cancelling derivative reveals this bound is optimised in α_k at

$$\alpha_k^* = \frac{\eta \lambda_{\min}(Q)}{\eta^2 \lambda_{\min}(Q)^2 + \beta + \frac{\gamma}{\Xi_{k-1}}}$$

and at that point we obtain

$$\equiv_k \leq \left(\frac{\beta + \frac{\gamma}{\Xi_{k-1}}}{\eta^2 \lambda_{\min}(Q)^2 + \beta + \frac{\gamma}{\Xi_{k-1}}}\right) \Xi_{k-1}$$

Cute ODE upper bound

We can write our recurrence so far as a difference equation

$$\frac{\Xi_k - \Xi_{k-1}}{\Xi_{k-1}} \leq -\frac{\eta^2 \lambda_{\min}(Q)^2}{\eta^2 \lambda_{\min}(Q)^2 + \beta + \frac{\gamma}{\Xi_{k-1}}}$$

and solve the corresponding differential equation with equality to find

$$\frac{\Xi_k}{\Xi_1} \leq \frac{y}{W\left(y e^{y+xk}\right)} \quad \text{with} \quad x \coloneqq \frac{\eta^2 \lambda_{\min}(Q)^2}{\eta^2 \lambda_{\min}(Q)^2 + \beta} \quad \text{and} \quad y \coloneqq \frac{\gamma/\Xi_1}{\eta^2 \lambda_{\min}(Q)^2 + \beta}$$

so that all in all the excess risk decays as $\Xi_k \cong \Xi_1/k$ and the **learning rate** as $\alpha_k^* \cong 1/k$.

More precisely in terms of relevant problem-dependent constants

We arrive at excess risk bound

Theorem

$$\Xi_k \leq \frac{121\kappa d^2}{2\lambda_{\min}(Q)} \frac{48\sigma^2 M_2 + 107A^2 dM_4}{k+C}$$

where $\kappa = \frac{\lambda_{\max}(Q)}{\lambda_{\min}(Q)}$ is the condition number of Q, and M_p bounds the i^{th} moment of each entry of the covariate vector $\mathbf{X} \sim \mathbb{P}$.

If A^2d is at most of order σ^2 , this is d^2/k . Matching lower bounds.

Reflections

To think about

- Is the optimal tuning $\alpha_k \cong 1/k$ biologically realistic?
- Learning rate α_k needs to decay. What decides a *new task* in the brain?
- Optimal tuning for α_k depends on zoo of unknowns. How are these estimated?
- Brutal tuning $\alpha_k = \frac{c}{C+k}$ may result in risk rising to e^{const} before 1/k decay kicks in.
- Is the noise rate A biologically small compared to σ/\sqrt{d} ?
- Realism in the model
 - More than one neuron
 - Depth, architecture
 - Other tasks and losses

Conclusion

We saw a simple model for spiking neurons inspired by biology.

We saw a concrete rendering of resulting update rule.

We interpreted it as a zeroth-order two-point iterative scheme.

We evaluated this scheme on a linear regression task.

We derived a rate for the excess risk, and proved that it matches lower bounds.

Let's talk!

References i

Schmidt-Hieber, J. (2023). "Interpreting learning in biological neural networks as zero-order optimization method". In: arXiv preprint, arXiv:2301.11777.