
Inference in Non-parametric Settings with Generalised

Likelihood Ratios

Wouter M. Koolen

CWI and University of Twente

ML-ST-N&O-afternoon, CWI, December 13, 2024



Goal

In this talk we look at statistically rejecting hypotheses.

Why is that interesting? Don’t we want to learn the truth?



Goal

In this talk we look at statistically rejecting hypotheses.

Why is that interesting? Don’t we want to learn the truth?



Goal

In this talk we look at statistically rejecting hypotheses.

Why is that interesting? Don’t we want to learn the truth?



Setup

We look at a sequence of scalar outcomes X1,X2, . . . revealed to us sequentially.

We have some hypothesis that Xi are i.i.d. from P.

We do not trust this hypothesis.

So we want to reject P. Ideally fast.



Setup

We look at a sequence of scalar outcomes X1,X2, . . . revealed to us sequentially.

We have some hypothesis that Xi are i.i.d. from P.

We do not trust this hypothesis.

So we want to reject P. Ideally fast.



Setup

We look at a sequence of scalar outcomes X1,X2, . . . revealed to us sequentially.

We have some hypothesis that Xi are i.i.d. from P.

We do not trust this hypothesis.

So we want to reject P. Ideally fast.



Setup

We look at a sequence of scalar outcomes X1,X2, . . . revealed to us sequentially.

We have some hypothesis that Xi are i.i.d. from P.

We do not trust this hypothesis.

So we want to reject P. Ideally fast.



Simple vs Simple



Go-to-setting

Say we do not believe P is the case. Instead, we think Q is a better explanation.

If we are right and data come from Q, how long until we can reject P?

Definition

Fix a confidence level δ ∈ (0, 1). A stopping time τ against P is δ-correct if

P {τ < ∞} ≤ δ.

Among all δ-correct τ stopping times, we like to minimise expected stopping time EQ [τ ] .



Simple vs Simple result

The optimal expected stopping time is

min
τ a stopping time

that is δ-correct against P

EQ [τ ]

In the simple vs simple case, this is

min
τ a stopping time

that is δ-correct against P

EQ [τ ] =
ln 1

δ

KL(Q∥P)
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Lower bound by KL Compression

Theorem

Any δ-correct stopping time τ against P has expected stopping time at least

EQ [τ ] ≥
ln 1

δ

KL(Q∥P)

Proof.

By KL contraction and δ-correctness, we have

EQ [τ ] KL(Q∥P) = KL(Qτ∥Pτ ) ≥ kl (Q {τ < ∞} ,P {τ < ∞}) ≥ ln
1

δ
.



Lower bound by KL Compression

Theorem

Any δ-correct stopping time τ against P has expected stopping time at least

EQ [τ ] ≥
ln 1

δ

KL(Q∥P)

Proof.

By KL contraction and δ-correctness, we have

EQ [τ ] KL(Q∥P) = KL(Qτ∥Pτ ) ≥ kl (Q {τ < ∞} ,P {τ < ∞}) ≥ ln
1

δ
.



Upper bound by likelihood ratio stopping

Let’s consider the likelihood ratio for data X1, . . . ,Xn

dQ

dP
(X n) =

n∏
t=1

dQ

dP
(Xt)

and the associated likelihood ratio stopping time

τ := inf

{
n

∣∣∣∣dQdP (X n) ≥ 1

δ

}
.



Likelihood ratio stopping works

Theorem

The likelihood ratio stopping time τ

• is δ-correct

• ensures EQ [τ ] =
ln 1

δ

KL(Q∥P) .

Proof.

• By Ville’s Inequality, P {τ < ∞} = P
{
∃n : dQ

dP (X
n) ≥ 1

δ

}
≤ δ.

• By Wald’s Equality, assuming Q {τ < ∞} = 1, we have,

ln
1

δ
≈ EQ

[
τ∑

t=1

ln
dQ

dP
(Xt)

]
= EQ

[
τ∑

t=1

KL(Q∥P)

]
= EQ [τ ] KL(Q∥P)
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Summary

Consider two distributions P and Q.

We have a stopping time such that

• (Safety) If we are in P, we will only reject it with small probability.

• (Power) If we are in Q, we will reject P with about
ln 1

δ

KL(Q∥P) samples.

Application: we can do this in parallel with P and Q reversed, to figure out in which of the

two we are.

Problem: we typically want to reject many P and we may not know a good Q.
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Composite Null and Alternative



Let’s go composite

Let’s study probability distributions on the interval [0, 1]. For m ∈ [0, 1], consider

Hm := {P on [0, 1]|EP [X ] = m} .

Let us try to reject the composite null Hm.

Definition

We say stopping time τ against Hm is δ-correct if

∀P ∈ Hm : P {τ < ∞} ≤ δ

Suppose data come from Q /∈ Hm. How may samples will it take to reject Hm?



Let’s go composite

Let’s study probability distributions on the interval [0, 1]. For m ∈ [0, 1], consider

Hm := {P on [0, 1]|EP [X ] = m} .

Let us try to reject the composite null Hm.

Definition

We say stopping time τ against Hm is δ-correct if

∀P ∈ Hm : P {τ < ∞} ≤ δ

Suppose data come from Q /∈ Hm. How may samples will it take to reject Hm?



Let’s go composite

Let’s study probability distributions on the interval [0, 1]. For m ∈ [0, 1], consider

Hm := {P on [0, 1]|EP [X ] = m} .

Let us try to reject the composite null Hm.

Definition

We say stopping time τ against Hm is δ-correct if

∀P ∈ Hm : P {τ < ∞} ≤ δ

Suppose data come from Q /∈ Hm. How may samples will it take to reject Hm?



Sample complexity

By the same KL compression lower bound, for any P ∈ Hm,

EQ [τ ] ≥
ln 1

δ

KL(Q∥P)

or equivalently,

EQ [τ ] ≥
ln 1

δ

KLinf(Q∥m)
where KLinf(Q∥m) := inf
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KL(Q∥P)

Question: is that also an upper bound?
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Duality for KLinf (Honda and Takemura, 2010)

optimisation
Can we understand that KLinf? Well,

KLinf(Q∥m) = inf
P∈Hm

KL(Q∥P)

= min
P prob [0, 1]
EP [X ]=m

KL(Q∥P)

= max
λ,ν

min
P meas [0, 1]

KL(Q∥P) + λEP [X −m] + ν(EP [1]− 1)

= max
λ,ν

∀x∈[0,1]:ν+λ(x−m)≥0

EQ [ln (ν + λ(X −m))] + 1− ν

= max
λ

∀x∈[0,1]:1+λ(x−m)≥0

EQ [ln (1 + λ(X −m))]

The optimal choice is

P∗ =
Q

ν + λ(X −m)
and ν∗ = 1

with possibly some extra mass at either endpoint 0 or 1 of the domain.
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Martingale
e-values

We proved

KLinf(Q∥m) = max
λ∈[ −1

1−m , 1
m ]

EQ [ln (1 + λ(X −m))]

In fact, for every λ ∈
[

−1
1−m , 1

m

]
the expression 1 + λ(X −m) is a

• multiplicative increment of a non-negative martingale

• e-value

• likelihood ratio

• Bayes factor

against P for every P ∈ Hm.

Suggests the “likelihood ratio” statistic

n∑
t=1

ln(1 + λQ(Xt −m))

where λQ is the argmaxλ of the KLinf(Q∥m).
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Likelihood ratio

Let us stop when

τ := inf

{
n

∣∣∣∣∣
n∑

t=1

ln(1 + λQ(Xt −m)) ≥ ln
1

δ

}
.

This is δ-correct under H0, again by Ville’s Inequality. Moreover, by Wald’s Equality
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What if we do not know Q?

We talked about rejecting Hm using Q. That lead to the recipe of using a fixed λQ . What if

we do not know an a-priori suitable Q?

We need to somehow learn the alternative Q.

Simple idea: fit λ to the data.

• Good: it will converge to actual Q

• Bad: it over-fits the data

Technically, we will use the statistic

nKLinf(P̂n∥m) = max
λ∈[ −1

1−m , 1
m ]

n∑
t=1

ln (1 + λ(Xt −m))

In contrast to the fixed λ case, this is not (the logarithm of) a martingale. Endangers

δ-correctness.
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Taming the over-fitting
online learning

What is the probability under P that

nKLinf(P̂n∥m) = max
λ∈[ −1

1−m , 1
m ]

n∑
t=1

ln (1 + λ(Xt −m))

exceeds some given threshold?

Idea: We can relate the max to an average.

Theorem

nKLinf(P̂n∥m) ≤ ln

∫ 1
m

−1
1−m

e
∑n

t=1 ln(1+λ(Xt−m))m(1−m) dλ+ ln n + O(1)

Proof.

Invoke worst-case regret bound for exp-concave losses.
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Upshot

Under any P ∈ Hm, we have

P

{
∃n : nKLinf(P̂n∥m) ≥ ln

1

δ
+ ln n

}
≤ δ

which witnesses δ-correctness of the stopping time

τ := inf

{
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∣∣∣∣nKLinf(P̂n∥m) ≥ ln
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δ
+ ln n

}
.

As for the power, we have

EQ [τ ] ≤
ln 1

δ

KLinf (Q∥m)
+ ln

ln 1
δ

KLinf (Q∥m)

Asymptotic optimality in δ → 0.
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Extensions



How general is this KLinf idea?

Moment-constrained classes. Let’s look at e.g.

Hϵ
B,m =

{
P on R

∣∣∣ EP [X ] = m,EP

[
|X |1+ϵ

]
≤ B

}

Going through duality, we end up with two Lagrange multipliers:

KLinf (Q∥m) = max
λ1∈R,λ2≥0

∀x∈R:1+λ1(X−m)+λ2(|X |1+ϵ−B)≥0

EQ

[
ln
(
1 + λ1(X −m) + λ2

(
|X |1+ϵ − B

))]

Online learning regret now 2 ln n. In general with d constraints, d ln n.

Application: anytime-valid confidence intervals for heavy-tailed distributions. (Agrawal,

Juneja, and Koolen, 2021)
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Questions

• What about infinitely many constraints? E.g.

• Sub-Gaussian class

H =
{
P on R

∣∣∣∀η ∈ R : EP [e
ηX ] ≤ e

1
2
η2
}

(project with Shubhada Agrawal)

• Monontone densities (project with Yunda Hao)

• Is that regret step tight? (project with Rémy Degenne, Timothée Mathieu, Shubhada

Agarwal)

• What about centred moment-constrained classes? Adversarially corrupted distributions?

(project with Debabrota Basu)

• In bandit applications often want to learn (i.e. reject) relations between two arms

• Multi-objective best arm, Pareto front (Crepon, Garivier, and Koolen, 2024)

• What about constrained best arm under dependence (project with Tyron Lardy and

Christina Katsimerou)



Conclusion



Conclusion

We discussed KLinf, one of my favourite mathematical objects.

Let’s talk!
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