Inference in Non-parametric Settings with Generalised Likelihood Ratios

Wouter M. Koolen

CWI and University of Twente

ML-ST-N&O-afternoon, CWI, December 13, 2024

Goal

In this talk we look at statistically rejecting hypotheses.

Goal

In this talk we look at statistically rejecting hypotheses.

Why is that interesting? Don't we want to learn the truth?

Goal

In this talk we look at statistically rejecting hypotheses.

Why is that **interesting**? Don't we want to learn the truth?

We look at a sequence of scalar outcomes X_1, X_2, \dots revealed to us sequentially.

We look at a sequence of scalar outcomes X_1, X_2, \dots revealed to us sequentially.

We have some hypothesis that X_i are i.i.d. from P.

We look at a sequence of scalar outcomes X_1, X_2, \ldots revealed to us sequentially.

We have some hypothesis that X_i are i.i.d. from P.

We do not trust this hypothesis.

We look at a sequence of scalar outcomes X_1, X_2, \ldots revealed to us sequentially.

We have some hypothesis that X_i are i.i.d. from P.

We do not trust this hypothesis.

So we want to reject P. Ideally fast.

Simple vs Simple

Go-to-setting

Say we do not believe P is the case. Instead, we think Q is a better explanation.

If we are right and data come from Q, how long until we can reject P?

Definition

Fix a confidence level $\delta \in (0,1)$. A stopping time τ against P is δ -correct if

$$P\{\tau < \infty\} \leq \delta.$$

Among all δ -correct au stopping times, we like to minimise expected stopping time $\mathbb{E}_{Q}[au]$.

Simple vs Simple result

The optimal expected stopping time is

 $\min_{\substack{\tau \text{ a stopping time} \\ \text{that is } \delta\text{-correct against } P}} \mathbb{E}_Q[\tau]$

Simple vs Simple result

The optimal expected stopping time is

$$\min_{\substack{\tau \text{ a stopping time} \\ \text{that is } \delta\text{-correct against } P}} \mathbb{E}_Q[\tau]$$

In the simple vs simple case, this is

$$\min_{\substack{\tau \text{ a stopping time} \\ \text{that is } \delta\text{-correct against } P}} \mathbb{E}_Q[\tau] \ = \ \frac{\ln\frac{1}{\delta}}{\mathsf{KL}(Q\|P)}$$

Lower bound by KL Compression

Theorem

Any δ -correct stopping time τ against P has expected stopping time at least

$$\mathbb{E}_{Q}[\tau] \geq \frac{\ln \frac{1}{\delta}}{\mathsf{KL}(Q \| P)}$$

Lower bound by KL Compression

Theorem

Any δ -correct stopping time τ against P has expected stopping time at least

$$\mathbb{E}_{Q}[\tau] \geq \frac{\ln \frac{1}{\delta}}{\mathsf{KL}(Q \| P)}$$

Proof.

By KL contraction and δ -correctness, we have

$$\mathbb{E}_{Q}[\tau]\operatorname{\mathsf{KL}}(Q\|P) \ = \ \operatorname{\mathsf{KL}}(Q^{\tau}\|P^{\tau}) \ \geq \ \operatorname{\mathsf{kl}}\left(Q\left\{\tau < \infty\right\}, P\left\{\tau < \infty\right\}\right) \ \geq \ \ln\frac{1}{\delta}.$$

Upper bound by likelihood ratio stopping

Let's consider the likelihood ratio for data X_1, \ldots, X_n

$$\frac{dQ}{dP}(X^n) = \prod_{t=1}^n \frac{dQ}{dP}(X_t)$$

and the associated likelihood ratio stopping time

$$au := \inf \left\{ n \middle| \frac{dQ}{dP}(X^n) \ge \frac{1}{\delta} \right\}.$$

Likelihood ratio stopping works

Theorem

The likelihood ratio stopping time au

- is δ -correct
- ensures $\mathbb{E}_Q[\tau] = \frac{\ln \frac{1}{\delta}}{KL(Q||P)}$.

Likelihood ratio stopping works

Theorem

The likelihood ratio stopping time au

- is δ -correct
- ensures $\mathbb{E}_Q[\tau] = \frac{\ln \frac{1}{\delta}}{KL(Q||P)}$.

Proof.

- By Ville's Inequality, $P\left\{\tau<\infty\right\}=P\left\{\exists n: \frac{dQ}{dP}(X^n)\geq \frac{1}{\delta}\right\}\leq \delta.$
- ullet By Wald's Equality, assuming $Q\left\{ au<\infty
 ight\} =1$, we have,

$$\ln \frac{1}{\delta} \; \approx \; \mathbb{E}_Q \left[\sum_{t=1}^{\tau} \ln \frac{dQ}{dP}(X_t) \right] \; = \; \mathbb{E}_Q \left[\sum_{t=1}^{\tau} \mathsf{KL}(Q \| P) \right] \; = \; \mathbb{E}_Q[\tau] \, \mathsf{KL}(Q \| P)$$

Summary

Consider two distributions P and Q.

We have a stopping time such that

- (Safety) If we are in P, we will only reject it with small probability.
- (Power) If we are in Q, we will reject P with about $\frac{\ln \frac{1}{\delta}}{KL(Q||P)}$ samples.

Summary

Consider two distributions P and Q.

We have a stopping time such that

- (Safety) If we are in P, we will only reject it with small probability.
- (Power) If we are in Q, we will reject P with about $\frac{\ln \frac{1}{\delta}}{KL(Q||P)}$ samples.

Application: we can do this in parallel with P and Q reversed, to figure out in which of the two we are.

Summary

Consider two distributions P and Q.

We have a stopping time such that

- (Safety) If we are in P, we will only reject it with small probability.
- (Power) If we are in Q, we will reject P with about $\frac{\ln \frac{1}{\delta}}{KL(Q||P)}$ samples.

Application: we can do this in parallel with P and Q reversed, to figure out in which of the two we are.

Problem: we typically want to reject many P and we may not know a good Q.

Composite Null and Alternative

Let's go composite

Let's study probability distributions on the interval [0,1]. For $m\in[0,1]$, consider

$$\mathcal{H}_m \; \coloneqq \; \left\{ P \text{ on } [0,1] | \mathbb{E}_P[X] = m \right\}.$$

Let us try to reject the composite null \mathcal{H}_m .

Let's go composite

Let's study probability distributions on the interval [0,1]. For $m \in [0,1]$, consider

$$\mathcal{H}_m := \{P \text{ on } [0,1] | \mathbb{E}_P[X] = m\}.$$

Let us try to reject the composite null \mathcal{H}_m .

Definition

We say stopping time τ against \mathcal{H}_m is δ -correct if

$$\forall P \in \mathcal{H}_m: P\{\tau < \infty\} \leq \delta$$

Let's go composite

Let's study probability distributions on the interval [0,1]. For $m \in [0,1]$, consider

$$\mathcal{H}_m := \{P \text{ on } [0,1] | \mathbb{E}_P[X] = m\}.$$

Let us try to reject the composite null \mathcal{H}_m .

Definition

We say stopping time τ against \mathcal{H}_m is δ -correct if

$$\forall P \in \mathcal{H}_m: P\{\tau < \infty\} \leq \delta$$

Suppose data come from $Q \notin \mathcal{H}_m$. How may samples will it take to reject \mathcal{H}_m ?

Sample complexity

By the same KL compression lower bound, for any $P \in \mathcal{H}_m$,

$$\mathbb{E}_{Q}[\tau] \geq \frac{\ln \frac{1}{\delta}}{\mathsf{KL}(Q \| P)}$$

or equivalently,

$$\mathbb{E}_Q[au] \geq rac{\lnrac{1}{\delta}}{\mathsf{KLinf}(Q\|m)}$$
 where $\mathsf{KLinf}(Q\|m) := \inf_{P \in \mathcal{H}_m} \mathsf{KL}(Q\|P)$

Sample complexity

By the same KL compression lower bound, for any $P \in \mathcal{H}_m$,

$$\mathbb{E}_{Q}[\tau] \geq \frac{\ln \frac{1}{\delta}}{\mathsf{KL}(Q \| P)}$$

or equivalently,

$$\mathbb{E}_Q[au] \geq rac{\lnrac{1}{\delta}}{\mathsf{KLinf}(Q\|m)} \qquad \mathsf{where} \qquad \mathsf{KLinf}(Q\|m) := \inf_{P \in \mathcal{H}_m} \mathsf{KL}(Q\|P)$$

Question: is that also an upper bound?

Duality for KLinf (Honda and Takemura, 2010)

optimisation

Can we understand that KLinf? Well,

$$\begin{split} \mathsf{KLinf}(Q \| \mathit{m}) &= \inf_{P \in \mathcal{H}_{\mathit{m}}} \mathsf{KL}(Q \| P) \\ &= \min_{\substack{P \text{ prob } [0, 1] \\ \mathbb{E}_{P}[X] = \mathit{m}}} \mathsf{KL}(Q \| P) \\ &= \max_{\lambda, \nu} \min_{\substack{P \text{ meas } [0, 1] \\ \forall x \in [0, 1] : \nu + \lambda(x - \mathit{m}) \geq 0}} \mathsf{KL}(Q \| P) + \lambda \, \mathbb{E}_{P}[X - \mathit{m}] + \nu(\mathbb{E}_{P}[1] - 1) \\ &= \max_{\lambda, \nu} \quad \mathbb{E}_{Q} \left[\ln \left(\nu + \lambda(X - \mathit{m}) \right) \right] + 1 - \nu \\ &= \max_{\lambda} \quad \mathbb{E}_{Q} \left[\ln \left(1 + \lambda(X - \mathit{m}) \right) \right] \\ &= \max_{\lambda} \quad \mathbb{E}_{Q} \left[\ln \left(1 + \lambda(X - \mathit{m}) \right) \right] \end{split}$$

Duality for KLinf (Honda and Takemura, 2010)

optimisation

Can we understand that KLinf? Well,

$$\begin{aligned} \mathsf{KLinf}(Q \| m) &= \inf_{P \in \mathcal{H}_m} \mathsf{KL}(Q \| P) \\ &= \min_{\substack{P \text{ prob } [0, 1] \\ \mathbb{E}_P[X] = m}} \mathsf{KL}(Q \| P) \\ &= \max_{\lambda, \nu} \min_{\substack{P \text{ meas } [0, 1] \\ \forall x \in [0, 1] : \nu + \lambda(x - m) \geq 0}} \mathsf{KL}(Q \| P) + \lambda \, \mathbb{E}_P[X - m] + \nu(\mathbb{E}_P[1] - 1) \\ &= \max_{\lambda, \nu} \quad \mathbb{E}_Q \left[\ln \left(\nu + \lambda(X - m) \right) \right] + 1 - \nu \\ &= \max_{\lambda} \quad \mathbb{E}_Q \left[\ln \left(1 + \lambda(X - m) \right) \right] \\ &= \max_{\lambda} \quad \mathbb{E}_Q \left[\ln \left(1 + \lambda(X - m) \right) \right] \end{aligned}$$

The optimal choice is

$$P^* = \frac{Q}{\nu + \lambda(X - m)}$$
 and $\nu^* = 1$

with possibly some extra mass at either endpoint 0 or 1 of the domain.

Martingale

We proved

$$\mathsf{KLinf}(Q \| m) = \max_{\lambda \in \left[rac{-1}{1-m}, rac{1}{m}
ight]} \mathbb{E}_Q \left[\ln \left(1 + \lambda (X-m)
ight)
ight]$$

In fact, for every $\lambda \in \left[\frac{-1}{1-m}, \frac{1}{m}\right]$ the expression $1 + \lambda(X-m)$ is a

- multiplicative increment of a non-negative martingale
- e-value
- likelihood ratio
- Bayes factor

against P for **every** $P \in \mathcal{H}_m$.

Martingale

We proved

$$\mathsf{KLinf}(Q \| m) = \max_{\lambda \in \left[rac{1}{1-m}, rac{1}{m}
ight]} \mathbb{E}_Q \left[\mathsf{In} \left(1 + \lambda (X-m)
ight)
ight]$$

In fact, for every $\lambda \in \left[\frac{-1}{1-m}, \frac{1}{m}\right]$ the expression $1 + \lambda(X-m)$ is a

- multiplicative increment of a non-negative martingale
- e-value
- likelihood ratio
- Bayes factor

against P for every $P \in \mathcal{H}_m$.

Suggests the "likelihood ratio" statistic

$$\sum_{t=1}^n \ln(1+\lambda_Q(X_t-m))$$

where λ_Q is the arg max $_{\lambda}$ of the KLinf($Q \parallel m$).

Likelihood ratio

Let us stop when

$$au \ \coloneqq \ \inf \left\{ n \middle| \sum_{t=1}^n \ln(1 + \lambda_Q(X_t - m)) \geq \ln rac{1}{\delta}
ight\}.$$

Likelihood ratio

Let us stop when

$$au \ := \ \inf \left\{ \left. n \middle| \sum_{t=1}^n \ln(1 + \lambda_Q(X_t - m)) \ge \ln \frac{1}{\delta} \right\}.$$

This is δ -correct under \mathcal{H}_0 , again by Ville's Inequality. Moreover, by Wald's Equality

$$\mathbb{E}_Q[au]\mathbb{E}_Q[\ln(1+\lambda_Q(X-m))] \ = \ \mathbb{E}_Q\left[\sum_{t=1}^ au \ln(1+\lambda_Q(X_t-m))
ight] \ pprox \ \lnrac{1}{\delta}$$

We talked about rejecting \mathcal{H}_m using Q. That lead to the recipe of using a fixed λ_Q . What if we do not know an a-priori suitable Q?

We talked about rejecting \mathcal{H}_m using Q. That lead to the recipe of using a fixed λ_Q . What if we do not know an a-priori suitable Q?

We need to somehow learn the alternative Q.

We talked about rejecting \mathcal{H}_m using Q. That lead to the recipe of using a fixed λ_Q . What if we do not know an a-priori suitable Q?

We need to somehow learn the alternative Q.

Simple idea: fit λ to the data.

- Good: it will converge to actual Q
- Bad: it over-fits the data

We talked about rejecting \mathcal{H}_m using Q. That lead to the recipe of using a fixed λ_Q . What if we do not know an a-priori suitable Q?

We need to somehow learn the alternative Q.

Simple idea: fit λ to the data.

- Good: it will converge to actual Q
- Bad: it over-fits the data

Technically, we will use the statistic

$$n \operatorname{\mathsf{KLinf}}(\hat{P}_n \| m) = \max_{\lambda \in \left[\frac{-1}{1-m}, \frac{1}{m}\right]} \sum_{t=1}^n \ln\left(1 + \lambda(X_t - m)\right)$$

What if we do not know Q?

We talked about rejecting \mathcal{H}_m using Q. That lead to the recipe of using a fixed λ_Q . What if we do not know an a-priori suitable Q?

We need to somehow learn the alternative Q.

Simple idea: fit λ to the data.

- Good: it will converge to actual Q
- Bad: it over-fits the data

Technically, we will use the statistic

$$n \operatorname{\mathsf{KLinf}}(\hat{P}_n \| m) = \max_{\lambda \in \left[\frac{-1}{1-m}, \frac{1}{m}\right]} \sum_{t=1}^n \ln\left(1 + \lambda(X_t - m)\right)$$

In contrast to the fixed λ case, this is **not** (the logarithm of) a martingale. Endangers δ -correctness.

Taming the over-fitting

What is the probability under P that

$$n \operatorname{\mathsf{KLinf}}(\hat{P}_n \| m) \ = \ \max_{\lambda \in \left[rac{-1}{1-m}, rac{1}{m}
ight]} \ \sum_{t=1}^n \ln \left(1 + \lambda (X_t - m)
ight)$$

exceeds some given threshold?

Taming the over-fitting

What is the probability under *P* that

$$n \operatorname{\mathsf{KLinf}}(\hat{P}_n \| m) = \max_{\lambda \in \left[\frac{-1}{1-m}, \frac{1}{m}\right]} \sum_{t=1}^n \ln\left(1 + \lambda(X_t - m)\right)$$

exceeds some given threshold?

Idea: We can relate the max to an average.

Theorem

$$n \operatorname{\mathsf{KLinf}}(\hat{P}_n \| m) \ \le \ \operatorname{\mathsf{In}} \int_{rac{-1}{1-m}}^{rac{1}{m}} \mathrm{e}^{\sum_{t=1}^n \ln(1+\lambda(X_t-m))} m(1-m) \, \mathrm{d}\lambda + \ln n + O(1)$$

Taming the over-fitting

What is the probability under P that

$$n \operatorname{\mathsf{KLinf}}(\hat{P}_n \| m) = \max_{\lambda \in \left[\frac{-1}{1-m}, \frac{1}{m}\right]} \sum_{t=1}^n \ln\left(1 + \lambda(X_t - m)\right)$$

exceeds some given threshold?

Idea: We can relate the max to an average.

Theorem

$$n \operatorname{\mathsf{KLinf}}(\hat{P}_n \| m) \ \le \ \ln \int_{\frac{-1}{n}}^{\frac{1}{m}} \, \mathrm{e}^{\sum_{t=1}^n \ln(1 + \lambda(X_t - m))} m(1 - m) \, \mathrm{d}\lambda + \ln n + O(1)$$

Proof.

Invoke worst-case regret bound for exp-concave losses.

Upshot

Under any $P \in \mathcal{H}_m$, we have

$$P\left\{\exists n: n \, \mathsf{KLinf}(\hat{P}_n \| m) \geq \ln \frac{1}{\delta} + \ln n\right\} \leq \delta$$

which witnesses δ -correctness of the stopping time

$$au := \inf \left\{ n \middle| n \operatorname{\mathsf{KLinf}}(\hat{P}_n || m) \geq \ln \frac{1}{\delta} + \ln n \right\}.$$

Upshot

Under any $P \in \mathcal{H}_m$, we have

$$P\left\{\exists n: n \, \mathsf{KLinf}(\hat{P}_n || m) \geq \ln \frac{1}{\delta} + \ln n\right\} \leq \delta$$

which witnesses δ -correctness of the stopping time

$$au \ \coloneqq \ \inf \left\{ n \middle| n \operatorname{\mathsf{KLinf}}(\hat{P}_n || m) \geq \ln \frac{1}{\delta} + \ln n \right\}.$$

As for the power, we have

$$\mathbb{E}_{Q}[\tau] \leq \frac{\ln \frac{1}{\delta}}{\mathsf{KLinf}\left(Q\|m\right)} + \ln \frac{\ln \frac{1}{\delta}}{\mathsf{KLinf}\left(Q\|m\right)}$$

Asymptotic optimality in $\delta \to 0$.

Extensions

How general is this KLinf idea?

Moment-constrained classes. Let's look at e.g.

$$\mathcal{H}_{B,m}^{\epsilon} = \left\{ P \text{ on } \mathbb{R} \mid \mathbb{E}_{P}[X] = m, \mathbb{E}_{P}\left[|X|^{1+\epsilon}\right] \leq B \right\}$$

How general is this KLinf idea?

Moment-constrained classes. Let's look at e.g.

$$\mathcal{H}_{B,m}^{\epsilon} = \left\{ P \text{ on } \mathbb{R} \mid \mathbb{E}_{P}[X] = m, \mathbb{E}_{P}\left[|X|^{1+\epsilon}\right] \leq B \right\}$$

Going through duality, we end up with two Lagrange multipliers:

$$\mathsf{KLinf}\left(Q\|m\right) \; = \; \max_{\substack{\lambda_1 \in \mathbb{R}, \lambda_2 \geq 0 \\ \forall \mathsf{x} \in \mathbb{R}: 1 + \lambda_1(\mathsf{X} - m) + \lambda_2\left(|\mathsf{X}|^{1 + \epsilon} - B\right) \geq 0}} \; \mathbb{E}_Q\left[\mathsf{In}\left(1 + \lambda_1(\mathsf{X} - m) + \lambda_2\left(|\mathsf{X}|^{1 + \epsilon} - B\right)\right)\right]$$

Online learning regret now $2 \ln n$. In general with d constraints, $d \ln n$.

How general is this KLinf idea?

Moment-constrained classes. Let's look at e.g.

$$\mathcal{H}_{B,m}^{\epsilon} = \left\{ P \text{ on } \mathbb{R} \mid \mathbb{E}_{P}[X] = m, \mathbb{E}_{P}\left[|X|^{1+\epsilon}\right] \leq B \right\}$$

Going through duality, we end up with two Lagrange multipliers:

$$\mathsf{KLinf}\left(Q\|\mathit{m}\right) \; = \; \max_{\substack{\lambda_1 \in \mathbb{R}, \lambda_2 \geq 0 \\ \forall x \in \mathbb{R}: 1 + \lambda_1(X - \mathit{m}) + \lambda_2\left(|X|^{1 + \epsilon} - B\right) \geq 0}} \; \mathbb{E}_Q\left[\mathsf{In}\left(1 + \lambda_1(X - \mathit{m}) + \lambda_2\left(|X|^{1 + \epsilon} - B\right)\right)\right]$$

Online learning regret now $2 \ln n$. In general with d constraints, $d \ln n$.

Application: anytime-valid confidence intervals for heavy-tailed distributions. (Agrawal, Juneja, and Koolen, 2021)

Questions

Questions

- What about infinitely many constraints? E.g.
 - Sub-Gaussian class

$$\mathcal{H} \ = \ \left\{ P \ \mathsf{on} \ \mathbb{R} \ \middle| \ orall \eta \in \mathbb{R} : \mathbb{E}_P[e^{\eta X}] \le e^{rac{1}{2}\eta^2}
ight\}$$
 (project with Shubhada Agrawal)

- Monontone densities (project with Yunda Hao)
- Is that regret step tight? (project with Rémy Degenne, Timothée Mathieu, Shubhada Agarwal)
- What about centred moment-constrained classes? Adversarially corrupted distributions? (project with Debabrota Basu)
- In bandit applications often want to learn (i.e. reject) relations between two arms
 - Multi-objective best arm, Pareto front (Crepon, Garivier, and Koolen, 2024)
 - What about constrained best arm under dependence (project with Tyron Lardy and Christina Katsimerou)

Conclusion

Conclusion

We discussed KLinf, one of my favourite mathematical objects.

Let's talk!

References i

- Agrawal, S., S. Juneja, and W. M. Koolen (Aug. 2021). "Regret Minimization in Heavy-Tailed Bandits". In: Proceedings of the 34th Annual Conference on Learning Theory (COLT).
- Crepon, É., A. Garivier, and W. M. Koolen (Feb. 2024). "Sequential Learning of the Pareto Front for Multi-objective Bandits". In: Proceedings of The 27th International Conference on Artificial Intelligence and Statistics. Vol. 238. Proceedings of Machine Learning Research.
- Honda, J. and A. Takemura (2010). "An Asymptotically Optimal Bandit Algorithm for Bounded Support Models.". In: COLT.