Identifying the best treatment for a mixture of subpopulations

UT Seminar in honour of Stef Baas' PhD defence

Wouter M. Koolen

with Y. Russac, C. Katsimerou, D. Bohle, O. Cappé, A. Garivier 15 Nov 2024

The Problem

Two treatments:

The Problem

Two treatments:

A stream of participants:

with sub-population identifier

What we want to know

Question of interest:

BAI Which of $\{C, D\}$ is the best overall treatment?

How does the presence of **sub-populations** affect learning?

Model for the Environment

Definition (Natural Frequencies)

• $\alpha \in \triangle_J$: frequency of the J subpopulations

Definition (Bandit)

A bandit with 2 treatments and J subpopulations is

• $\theta \in [0,1]^{2\times J}$: matrix of Bernoulli reward distributions

	8	8	 8
С	0.1	0.5	 8.0
D	0.3	0.2	 0.1

 α

 θ

Model for the Environment

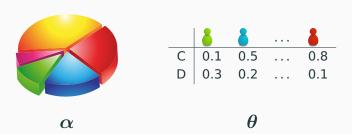
Definition (Natural Frequencies)

• $\alpha \in \triangle_J$: frequency of the J subpopulations

Definition (Bandit)

A bandit with 2 treatments and J subpopulations is

• $\theta \in [0,1]^{2 \times J}$: matrix of Bernoulli reward distributions



Natural frequencies α are known and bandit θ is **unknown**.

The Target

Best Treatment Overall (BAI-S)

Given α , the correct answer for bandit θ is

$$i^*(\theta) = \underset{a \in \{C,D\}}{\operatorname{argmax}} \sum_{j=1}^{J} \alpha_j \theta_{a,j}$$

The Protocol

We study four **Modes of Interaction**

Modes constrain the joint distribution of A_t and J_t

Goal and Approach

We seek a **response-adaptive** policy for Learner that

(1) is δ -PAC, i.e. for any bandit θ ,

 \mathbb{P}_{θ} (Learner stops and recommends wrong answer) $\leq \delta$.

(2) minimises **sample complexity**, i.e. \mathbb{E}_{θ} [stopping time]

Our Results

(Russac, Katsimerou, Bohle, Cappé, Garivier, and Koolen, 2021)

- · Information-theoretic lower bounds for all four modes
- Matching ($\delta o 0$) algorithms (Track-and-Stop family)

Lower Bound

Theorem

For any policy, the expected number of rounds for the BAI-S problem on θ with mode constraint $\mathcal C$ satisfies

$$\liminf_{\delta o 0} rac{\mathbb{E}_{m{ heta}}[au_{\delta}]}{\ln(1/\delta)} \geq \mathcal{T}^{\star}_{\mathcal{C}}(m{ heta})$$

where

$$T_{\mathcal{C}}^{\star}(\theta)^{-1} = \max_{\boldsymbol{w} \in \mathcal{C}} \inf_{\substack{\boldsymbol{\lambda} \in [0,1]^{2 \times J} \\ \boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{\lambda}_{\mathcal{C}} = \boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{\lambda}_{\mathcal{D}}}} \sum_{a \in \{C,D\}} \sum_{i=1}^{J} w_{a,i} \, \mathsf{KL}(\theta_{a,i}, \lambda_{a,i})$$

NB: the min/inf is the (expected) amount of statistical evidence collected per round by sampling proportions w against any bandit λ with $i^*(\lambda) \neq i^*(\theta)$

Upper Bound Intuition

Estimate for treatment quality carries **uncertainty**:

$$\sum_{j=1}^{J} \alpha_j \hat{\theta}_{a,j}$$

Uncertainty \Leftrightarrow variance.

If each arm a, j of variance $\sigma_{a,j}^2 = \theta_{a,j} (1 - \theta_{a,j})$ is sampled $n_{a,j}$ times

$$\mathbb{V}\left[\sum_{j=1}^{J} \alpha_j \hat{\theta}_{a,j}\right] = \sum_{j=1}^{J} \alpha_j^2 \mathbb{V}\left[\hat{\theta}_{a,j}\right] = \sum_{j=1}^{J} \frac{\alpha_j^2 \sigma_{a,j}^2}{n_{a,j}}$$

Upper Bound Intuition

Estimate for treatment quality carries **uncertainty**:

$$\sum_{j=1}^{J} \alpha_j \hat{\theta}_{a,j}$$

Uncertainty ⇔ variance.

If each arm a, j of variance $\sigma_{a,j}^2 = \theta_{a,j} (1 - \theta_{a,j})$ is sampled $n_{a,j}$ times

$$\mathbb{V}\left[\sum_{j=1}^{J} \alpha_j \hat{\theta}_{a,j}\right] = \sum_{j=1}^{J} \alpha_j^2 \mathbb{V}\left[\hat{\theta}_{a,j}\right] = \sum_{j=1}^{J} \frac{\alpha_j^2 \sigma_{a,j}^2}{n_{a,j}}$$

Minimised unconstrained (active mode) at

$$n_{a,j} \propto \alpha_j \sigma_{a,j}$$

Other modes: add **constraints** $n \in C$

Results (explicit Gaussian case)

Denoting the gap by $\Delta = \sum_{j=1}^{J} \alpha_j (\theta_{C,j} - \theta_{D,j})$, we find

$$T_{\text{oblivious}}^{\star}(\theta) \approx \frac{2\left(\sum_{a \in \{C,D\}} \sqrt{\sum_{j=1}^{J} \alpha_{j}(\sigma_{a,j}^{2} + (\theta_{a,j} - \alpha^{\mathsf{T}}\theta_{a})^{2})}\right)^{2}}{\Delta^{2}}$$

$$T_{\text{agnostic}}^{\star}(\theta) = \frac{2\left(\sqrt{\sum_{j=1}^{J} \alpha_{j}\sigma_{C,j}^{2}} + \sqrt{\sum_{j=1}^{J} \alpha_{j}\sigma_{D,j}^{2}}\right)^{2}}{\Delta^{2}}$$

$$T_{\text{proport.}}^{\star}(\theta) = \frac{2\sum_{j=1}^{J} \alpha_{j}(\sigma_{C,j} + \sigma_{D,j})^{2}}{\Delta^{2}},$$

$$T_{\text{active}}^{\star}(\theta) = \frac{2\left(\sum_{j=1}^{J} \alpha_{j}(\sigma_{C,j} + \sigma_{D,j})\right)^{2}}{\Delta^{2}},$$

Algorithm

Sampling Rule

Ensure that actual sampling proportions ${\it N}_t/t$ track oracle proportions at plug-in estimate $\hat{\theta}(t)$

$$w^*(\hat{\theta}(t)) = \arg\max_{w \in \mathcal{C}} \inf_{\substack{\lambda \in [0,1]^{2 \times J} \\ \alpha^\intercal \lambda_C = \alpha^\intercal \lambda_D}} \sum_{a \in \{C,D\}} \sum_{j=1}^J w_{a,j} \, \mathsf{KL}(\hat{\theta}_{a,j}(t), \lambda_{a,j})$$

Tracking is done locally, respecting the mode constraint

Stopping Rule (GLRT)

Stop at $\tau_{\delta} = t$ when we've collected enough information, i.e.

$$\inf_{\substack{\boldsymbol{\lambda} \in [0,1]^{2\times J} \\ \boldsymbol{\alpha}^{\mathsf{T}}\boldsymbol{\lambda}_{C} = \boldsymbol{\alpha}^{\mathsf{T}}\boldsymbol{\lambda}_{D}}} \sum_{a \in \{C,D\}} \sum_{j=1}^{J} \mathsf{N}_{a,j}(t) \, \mathsf{KL}(\hat{\theta}_{a,j}(t), \lambda_{a,j}) \, \geq \, \ln \frac{\ln t}{\delta}$$

Recommendation Rule

Output
$$i^*(\hat{\theta}(t))$$

Validation: Asymptotic Optimality

Theorem

The stopping+recommendation rules are δ -PAC.

Theorem

The algorithm ensures that the expected number of rounds for the BAI-S problem with mode constraint $\mathcal C$ satisfies

$$\liminf_{\delta o 0} rac{\mathbb{E}_{m{ heta}}[au_{\delta}]}{\ln(1/\delta)} \leq \mathcal{T}^{\star}_{\mathcal{C}}(m{ heta})$$

Upper bound matching lower bound, perfectly.

Conclusion

Subpopulation awareness reduces sample complexity ...
 ... even if only interested in overall best treatment!

Conclusion

Subpopulation awareness reduces sample complexity ...
 ... even if only interested in overall best treatment!

Start of a journey:

- · Going beyond asymptotic optimality
- Structured (shape-constrained) mean matrices
- (Non)-parametric reward models

Thanks!

References

- Garivier, A. and E. Kaufmann (2016). "Optimal best arm identification with fixed confidence". In: Conference on Learning Theory. PMLR, pp. 998–1027.
- Russac, Y., C. Katsimerou, D. Bohle, O. Cappé, A. Garivier, and W. M. Koolen (Dec. 2021). "A/B/n Testing with Control in the Presence of Subpopulations". In: Advances in Neural Information Processing Systems (NeurIPS) 34. Accepted.