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What we want to know

Control Developmental

with sub-population identifier

Question of interest:

BAI Which of {C,D} is the best overall treatment?

How does the presence of sub-populations affect learning?



Model for the Environment

Definition (Natural Frequencies)

• α ∈ △J: frequency of the J subpopulations

Definition (Bandit)
A bandit with 2 treatments and J subpopulations is

• θ ∈ [0,1]2×J: matrix of Bernoulli reward distributions

. . .
C 0.1 0.5 . . . 0.8
D 0.3 0.2 . . . 0.1

α θ

Natural frequencies α are known and bandit θ is unknown.



Model for the Environment

Definition (Natural Frequencies)

• α ∈ △J: frequency of the J subpopulations

Definition (Bandit)
A bandit with 2 treatments and J subpopulations is

• θ ∈ [0,1]2×J: matrix of Bernoulli reward distributions

. . .
C 0.1 0.5 . . . 0.8
D 0.3 0.2 . . . 0.1

α θ

Natural frequencies α are known and bandit θ is unknown.



The Target

Best Treatment Overall (BAI-S)

Given α, the correct answer for bandit θ is

i∗(θ) = argmax
a∈{C,D}

J∑
j=1

αjθa,j



The Protocol

We study four Modes of Interaction

Protocol
for t = 1,2, . . . until Learner decides to stop
• Oblivious Agnostic Proport. Active

Pick At

Hidden Jt ∼ α

Pick At

See Jt ∼ α

See Jt ∼ α

Pick At Pick At and Jt
• See reward Xt ∼ θAt,Jt

Learner recommends ı̂ ∈ {C,D} (best treatment)

Modes constrain the joint distribution of At and Jt



Goal and Approach

We seek a response-adaptive policy for Learner that

(1) is δ-PAC, i.e. for any bandit θ,

Pθ (Learner stops and recommends wrong answer) ≤ δ.

(2) minimises sample complexity, i.e. Eθ [stopping time]



Our Results

(Russac, Katsimerou, Bohle, Cappé, Garivier, and Koolen, 2021)

• Information-theoretic lower bounds for all four modes
• Matching (δ → 0) algorithms (Track-and-Stop family)



Lower Bound

Theorem
For any policy, the expected number of rounds for the BAI-S
problem on θ with mode constraint C satisfies

lim inf
δ→0

Eθ[τδ]

ln(1/δ) ≥ T⋆
C(θ)

where

T⋆
C(θ)

−1 = max
w∈C

inf
λ∈[0,1]2×J

α⊺λC=α⊺λD

∑
a∈{C,D}

J∑
i=1

wa,i KL(θa,i, λa,i)

NB: the min/inf is the (expected) amount of statistical evidence
collected per round by sampling proportions w against any
bandit λ with i∗(λ) ̸= i∗(θ)



Upper Bound Intuition

Estimate for treatment quality carries uncertainty:

J∑
j=1

αjθ̂a,j

Uncertainty ⇔ variance.

If each arm a, j of variance σ2a,j = θa,j(1− θa,j) is sampled na,j times

V

 J∑
j=1

αjθ̂a,j

 =

J∑
j=1

α2
j V

[
θ̂a,j

]
=

J∑
j=1

α2
j σ

2
a,j

na,j

Minimised unconstrained (active mode) at

na,j ∝ αjσa,j

Other modes: add constraints n ∈ C
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Results (explicit Gaussian case)

Denoting the gap by ∆ =
∑J

j=1 αj(θC,j − θD,j), we find

be
tte

r

T⋆
oblivious(θ) ≈

2
(∑

a∈{C,D}

√∑J
j=1 αj(σ

2
a,j + (θa,j −α⊺θa)2)

)2

∆2

T⋆
agnostic(θ) =

2
(√∑J

j=1 αjσ
2
C,j +

√∑J
j=1 αjσ

2
D,j

)2

∆2

T⋆
proport.(θ) =

2∑J
j=1 αj(σC,j + σD,j)

2

∆2 ,

T⋆
active(θ) =

2
(∑J

j=1 αj(σC,j + σD,j)
)2

∆2 ,



Algorithm

Sampling Rule

Ensure that actual sampling proportions Nt/t track oracle
proportions at plug-in estimate θ̂(t)

w∗(θ̂(t)) = argmax
w∈C

inf
λ∈[0,1]2×J

α⊺λC=α⊺λD

∑
a∈{C,D}

J∑
j=1

wa,j KL(θ̂a,j(t), λa,j)

Tracking is done locally, respecting the mode constraint

Stopping Rule (GLRT)

Stop at τδ = t when we’ve collected enough information, i.e.

inf
λ∈[0,1]2×J

α⊺λC=α⊺λD

∑
a∈{C,D}

J∑
j=1

Na,j(t) KL(θ̂a,j(t), λa,j) ≥ ln
ln t
δ

Recommendation Rule

Output i∗(θ̂(t))



Validation: Asymptotic Optimality

Theorem
The stopping+recommendation rules are δ-PAC.

Theorem
The algorithm ensures that the expected number of rounds for
the BAI-S problem with mode constraint C satisfies

lim inf
δ→0

Eθ[τδ]

ln(1/δ) ≤ T⋆
C(θ)

Upper bound matching lower bound, perfectly.



Conclusion

• Subpopulation awareness reduces sample complexity . . .
. . . even if only interested in overall best treatment!

Start of a journey:

• Going beyond asymptotic optimality
• Structured (shape-constrained) mean matrices
• (Non)-parametric reward models
• ϵ > 0

Thanks!
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