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Neuroscience Motivation



Motivation

We seek to understand biological neural networks.

E.g. the brain.

And how they learn

Today in particular: connections with optimisation



Why is this interesting

vs

Artificial NN Biological NN



Literature

Gerstner, Kistler, Naud, and Paninski, 2014

Chapter 19: Synaptic Plasticity and Learning

Interpreting learning in biological neural networks as

zero-order optimization method

Johannes Schmidt-Hieber∗

Abstract

Recently, significant progress has been made regarding the statistical understanding

of artificial neural networks (ANNs). ANNs are motivated by the functioning of the

brain, but differ in several crucial aspects. In particular, the locality in the updating rule

of the connection parameters in biological neural networks (BNNs) makes it biologically

implausible that the learning of the brain is based on gradient descent. In this work, we

look at the brain as a statistical method for supervised learning. The main contribution

is to relate the local updating rule of the connection parameters in BNNs to a zero-order

optimization method. It is shown that the expected values of the iterates implement a

modification of gradient descent.

Keywords: Biological neural networks, zero-order optimization, derivative-free methods,

supervised learning.

1 Introduction

Compared to artificial neural networks (ANNs), the brain learns faster, generalizes better

to new situations and consumes much less energy. A child only requires a few examples to

learn to discriminate a dog from a cat. And people only need a few hours to learn how to

drive a car. AI systems, however, need thousands of training samples for image recognition

tasks. And the self-driving car is still under development, despite the availability of data
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Spiking Neurons

It takes multiple (20–

50) concurrent incoming

spikes to pass the thresh-

old.



Updating the Weights: Hebbian / Spike Timing-Dependent Plasticity

j i
wij

Let wij denote the weight from a sending

(presynaptic) neuron j to a receiving (post-

synaptic) neuron i . Then

∆wij = Cwije
−c|∆t| at tpost for tpre < tpost

∆wij = −Cwije
−c|∆t| at tpre for tpre > tpost

where ∆t := |tpost − tpre |.



Simplifying the weight update

Upon a presynaptic spike at time τ , with previous and next postsynaptic spikes at T− and T+,

wij ← wij + wijC (−e−c(τ−T−) + e−c(T+−τ)).

For supervised learning, updates modulated by actual loss L = L(w) minus anticipated loss L̄

wij ← wij + wijα(L− L̄)(e−c(τ−T−) − e−c(T+−τ)).

Spike times τ are roughly uniform in window [T+ − T−], which we assume is of fixed length

2A. So with U independent uniform from [±A]:

wij ← wij + wijα(L− L̄)(e−c(A+U) − e−c(A−U)).

Go to logarithmic scale, θij := lnwij , and absorb constants

θij ← θij + ln
(
1 + α(L− L̄)(e−U − e−U)

)
≈ θij + α(L− L̄)(e−U − e−U)
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Fixing the details

We have arrived at the update rule from (Schmidt-Hieber, 2023). Here in vector form.

After round k with data Xk ,Yk , update to

θk = θk−1 + αk

(
L(θk−1 +Uk ,Xk ,Yk)− Lk

)(
e−Uk − eUk

)
.

Remains to choose the anticipated loss L̄k

� Zero?

� Loss of last round?

� Average loss so far?

� Treat as separate prediction task?

� Loss at θk−1 −Uk (in theory a very good idea)

� . . .
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Simplified/concrete/tractable form

Use loss with independent realisation U′ of noise as the anticipated loss L̄k .

θk = θk−1 + αk

(
L(θk−1 +Uk ,Xk ,Yk)− L(θk−1 +U′

k ,Xk ,Yk)
)(

e−Uk − eUk
)
.



What is this scheme?

Let’s stare at it:

θk = θk−1 + αk

(
L(θk−1 +Uk ,Xk ,Yk)− L(θk−1 +U′

k ,Xk ,Yk)
)(

e−Uk − eUk
)
.

� Zeroth order: evaluates loss L(θk−1 +Uk ,Xk ,Yk), no derivatives

� Two-point scheme: for each data item Xk ,Yk evaluate loss of two parameters θk−1 +Uk

and θk−1 +U′
k



Benchmark Task: Zeroth order

Linear Regression



Linear Regression

Model (θ⋆,P, σ2): well-specified linear regression with random design.

unknown true regression coefficient θ⋆ ∈ Rd

unknown covariate distribution P on Rd and

known noise level σ > 0.

� Covariates X1,X2, . . . are drawn i.i.d. from P.
� Response variables are Yk := X⊺

kθ
⋆ + ϵk with independent Gaussian noise ϵk ∼ N (0, σ2).

� Loss of parameter θ on data item X,Y is the square loss

L(θ,X,Y ) := (X⊺θ − Y )2

� Risk (expected loss) of parameter θ is

E
[
L(θ,X,Y )

]
= E

[
(X⊺(θ − θ⋆)− ϵ)2

]
= ∥θ − θ⋆∥2Q + σ2

where we write Q := E[XX⊺] ≻ 0 for the (uncentred) covariance matrix of the covariates.

� Excess risk of θ over risk minimiser θ⋆ is

∥θ − θ⋆∥2Q
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Interaction Protocol: Two-Point Zeroth-order Stochastic Optimization

For k = 1, 2, . . .

1. Learner picks two query points θ
(1)
k−1 and θ

(2)
k−1

2. Data item Xk ,Yk is drawn from linear regression model behind the scenes

3. Learner observes losses L(θ
(1)
k−1,Xk ,Yk) and L(θ

(2)
k−1,Xk ,Yk) of the two query points

4. Learner recommends evaluation point θk

NB: Learner has no access to data Xk ,Yk or gradient ∇θL(θ
(1)
k−1,Xk ,Yk), . . .

We are interested in the excess risk of the evaluation point θk as a function of time k.

The evaluation point θk is random due to random data X1,Y1, . . . (and randomised queries)

So we evaluate a strategy for Learner by its expected excess risk after k rounds

E
(θ

(1)
0 ,θ

(2)
0 ,X1,Y1)...(θ

(1)
k−1,θ

(2)
k−1,Xk ,Yk )

[
∥θk − θ⋆∥2Q

]
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Impact of the Query model for Linear Regression

If we query at θ, we see the scalar loss

L = (X⊺θ − Y )2 = (X⊺(θ − θ⋆)− ϵ)2

If further X ∼ P = N (0, I ) for simplicity, we have

X⊺(θ − θ⋆)− ϵ ∼ N
(
0, ∥θ − θ⋆∥2 + σ2

)
so that the loss is scaled chi-squared

L = (X⊺(θ − θ⋆)− ϵ)2 ∼
(
∥θ − θ⋆∥2 + σ2

)
χ2
1

Multiplicative noise. Very different from additive noise L ∼
(
∥θ − θ⋆∥2 + σ2

)
+N (0, const).
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How hard is this task?

Minimax lower bound for any two-point scheme Vk , θ̂.

Theorem

If d ≥ 3 and k ≥ d2, then,

inf
Vk ,θ̂

sup
θ⋆∈BR (0)

Eθ⋆,Vk

[
∥θ̂ − θ⋆∥2

]
≥ 1

162

(
1− 1√

2

)(
R2 ∧ d2

k
σ2

)
.

Minimax excess risk lower bound for non-adaptive two-point schemes

Theorem

If d ≥ 6, then for any k = 1, 2, . . .

inf
Vk∈Mk ,θ̂

sup
θ⋆∈BR (0)

Eθ⋆,Vk

[
∥θ̂ − θ⋆∥2

]
≥ 2−18

(
R2 ∧ d2

k
(R2 ∨ σ2)

)
.
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BNN meets Linear Regression



Slogan

For our combination of loss and update, (almost) everything is fully explicit linear/quadratic.



Connecting BNN to 2P-0O-StochOpt

We query at

θ
(1)
k−1 = θk−1 +Uk θ

(2)
k−1 = θk−1 +U′

k

and update using

θk = θk−1 + αk

(
(X⊺

k (θk−1 +Uk)− Yk)
2 − (X⊺

k (θk−1 +U′
k)− Yk)

2
)(

e−Uk − eUk
)

= θk−1 + αk

(
(X⊺

k (θk−1 − θ⋆ +Uk)− ϵk)
2 − (X⊺

k (θk−1 − θ⋆ +U′
k)− ϵk)

2
)(

e−Uk − eUk
)
.

So with δk := θk − θ⋆, we get the recurrence

δk = δk−1 + αk

(
(X⊺

k (δk−1 +Uk)− ϵk)
2 − (X⊺

k (δk−1 +U′
k)− ϵk)

2
)(

e−Uk − eUk
)
.

= δk−1 + αk

(
2(X⊺

kδk−1 − ϵk)X
⊺
k (U

′
k −Uk) + (X⊺

kUk)
2 − (X⊺

kU
′
k)

2
)(

e−Uk − eUk
)
.

=
(
I + 2αk

(
e−Uk − eUk

)
(U′

k −Uk)
⊺XkX

⊺
k

)
δk−1

+ αk

(
−2ϵkX⊺

k (U
′
k −Uk) + (X⊺

kUk)
2 − (X⊺

kU
′
k)

2
)(

e−Uk − eUk
)
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)(

e−Uk − eUk
)
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I + 2αk

(
e−Uk − eUk
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(U′
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⊺XkX
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k
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δk−1

+ αk
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−2ϵkX⊺

k (U
′
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kUk)
2 − (X⊺

kU
′
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)(

e−Uk − eUk
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Connecting BNN to 2P-0O-StochOpt

We query at

θ
(1)
k−1 = θk−1 +Uk θ

(2)
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k
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θk = θk−1 + αk
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2
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2
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e−Uk − eUk
)
.

So with δk := θk − θ⋆, we get the recurrence
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k (δk−1 +U′
k)− ϵk)

2
)(

e−Uk − eUk
)
.

= δk−1 + αk

(
2(X⊺

kδk−1 − ϵk)X
⊺
k (U

′
k −Uk) + (X⊺

kUk)
2 − (X⊺
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Does it even make sense on average?

We expressed our update rule in Stochastic Approximation form

δk = (I − αkAk)δk−1 + αkbk

for i.i.d. random matrix Ak and vector bk given by

Ak := −2
(
e−Uk − eUk

)
(U′

k −Uk)
⊺XkX

⊺
k ,

bk :=
(
−2ϵkX⊺

k (U
′
k −Uk) + (X⊺

kUk)
2 − (X⊺

kU
′
k)

2
)(

e−Uk − eUk
)
.

We have E[b] = 0 and E[A] = ηQ with constant η := 2E[
(
e−U − eU

)
U] depending on the

scale A of noise U.

In expectation, our update gives

Ek [δk ] =
(
I − αkηQ

)
δk−1

That is exactly gradient descent on the risk ∥δ∥2Q + σ2, with learning rate 1
2αkη.
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Case closed?

So the average iterate E[θk ]→ θ⋆ converges to the risk minimiser. Exponentially fast.

The metric of interest is excess risk ∥δ∥2Q . Variance matters!

So let’s work on the expected excess risk after k rounds (whp bounds also interesting):

Ξk := E
[
∥δk∥2Q

]
where Q = E[XX⊺]

Can we get a recurrence for Ξk? Yes!
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Recurrence for excess risk

Recall our update rule is of the form

δk = (I − αkAk)δk−1 + αkbk

for i.i.d. random matrix Ak and vector bk , with E[A] = ηQ, and E[b] = E[A⊺Qb] = 0.

So the excess risk satisfies

Ξk = Ek [δ
⊺
kQδk ]

= Ek [((I − αkAk)δk−1 + αkbk)
⊺Q((I − αkAk)δk−1 + αkbk)]

= δ⊺k−1 Ek [(I − αkAk)
⊺Q(I − αkAk)] δk−1 + α2

k Ek [b
⊺
kQbk ]

= δ⊺k−1

{
(I − αkηQ)⊺Q(I − αkηQ) + α2

k Ek [(Ak − ηQ)⊺Q(Ak − ηQ)]
}
δk−1 + α2

k Ek [b
⊺
kQbk ]

≤
(
(1− αkηλmin(Q))2 + α2

kβ
)
Ξk−1 + α2

kγ

abbreviating β := λmax

(
Ek

[
Q−1/2(Ak − ηQ)⊺Q(Ak − ηQ)Q−1/2

])
and γ := Ek [b

⊺
kQbk ].
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Inspecting where we are

Our state of progress so far is

Ξk ≤
(
(1− αkηλmin(Q))2 + α2

kβ
)
Ξk−1 + α2

kγ

for fixed η, λmin(Q), β and γ. The question is how to tune αk . This is now a scalar problem.

Cancelling derivative reveals this bound is optimised in αk at

α∗
k =

ηλmin(Q)

η2λmin(Q)2 + β + γ
Ξk−1

and at that point we obtain

Ξk ≤
( β + γ

Ξk−1

η2λmin(Q)2 + β + γ
Ξk−1

)
Ξk−1
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Cute ODE upper bound

We can write our recurrence so far as a difference equation

Ξk − Ξk−1

Ξk−1
≤ − η2λmin(Q)2

η2λmin(Q)2 + β + γ
Ξk−1

and solve the corresponding differential equation with equality to find

Ξk

Ξ1
≤ y

W (yey+xk)
with x :=

η2λmin(Q)2

η2λmin(Q)2 + β
and y :=

γ/Ξ1

η2λmin(Q)2 + β

so that all in all the excess risk decays as Ξk
∼= Ξ1/k and the learning rate as α∗

k
∼= 1/k.



More precisely in terms of relevant problem-dependent constants

We arrive at excess risk bound

Theorem

Ξk ≤
121κd2

2λmin(Q)

48σ2M2 + 107A2dM4

k + C

where κ = λmax(Q)
λmin(Q) is the condition number of Q, and Mp bounds the ith moment of each

entry of the covariate vector X ∼ P.

If A2d is at most of order σ2, this is d2/k . Matching lower bounds.



Reflections



To think about

� Is the optimal tuning αk
∼= 1/k biologically realistic?

� Learning rate αk needs to decay. What decides a new task in the brain?

� Optimal tuning for αk depends on zoo of unknowns. How are these estimated?

� Brutal tuning αk = c
C+k may result in risk rising to econst before 1/k decay kicks in.

� Is the noise rate A biologically small compared to σ/
√
d?

� Realism in the model

� More than one neuron

� Depth, architecture

� Other tasks and losses



Conclusion

We saw a simple model for spiking neurons inspired by biology.

We saw a concrete rendering of resulting update rule.

We interpreted it as a zeroth-order two-point iterative scheme.

We evaluated this scheme on a linear regression task.

We derived a rate for the excess risk, and proved that it matches lower bounds.

Let’s talk!
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