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Neuroscience Motivation



Motivation

We seek to understand biological neural networks.
E.g. the brain.
And how they learn

Today in particular: connections with optimisation



Why is this interesting
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Neuronal
Dynamics

Gerstner, Kistler, Naud, and Paninski, 2014 Sl e, 2028
Chapter 19: Synaptic Plasticity and Learning



Spiking Neurons
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Updating the Weights: Hebbian / Spike Timing-Dependent Plasticity

Let w; denote the weight from a sending

: : (presynaptic) neuron j to a receiving (post-
yr.t'.l) ! g I synaptic) neuron /. Then

- —c|A
Wi (t)_ﬂJ% Awy = Cwje I8 at thog for toe < toost

Awy = —Cw,-je*C‘At‘ at tpre fOr tpre > thost

where At = |tpost - tpl’8|'



Simplifying the weight update
Upon a presynaptic spike at time 7, with previous and next postsynaptic spikes at T_ and T,

wij < wi;+ W;J'C(—efc(TfT*) + e*C(TJr*T))'
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Simplifying the weight update
Upon a presynaptic spike at time 7, with previous and next postsynaptic spikes at T_ and T,
wj — wy+ w;C(—e =T-) 4 e=c(Te=7)),
For supervised learning, updates modulated by actual loss L = L(w) minus anticipated loss L
wj — wy+ wja(L — L) (e <= T-) — e=c(Te=m)y,

Spike times 7 are roughly uniform in window [T — T_], which we assume is of fixed length
2A. So with U independent uniform from [+A]:

wj < wj + wia(L — Z)(e*C(AJrU) = e*C(A*U)).

Go to logarithmic scale, ¢;; := In wj;, and absorb constants

0; « 0+ |n(1 +a(l—T)e Y- e—U))
~ O +a(l—LDeY—-eY



Fixing the details

We have arrived at the update rule from (Schmidt-Hieber, 2023). Here in vector form.

After round k with data X, Yk, update to

O = Ok—1+ o (L(Ok—1 + Ui, Xg, Yi) — Li) (efuk = eUk)~



Fixing the details

We have arrived at the update rule from (Schmidt-Hieber, 2023). Here in vector form.

After round k with data X, Yk, update to

O = Ok—1+ o (L(Ok—1 + Ui, Xg, Yi) — Li) (efuk = eUk)~

Remains to choose the anticipated loss Ly

e Zero?

e Loss of last round?

Average loss so far?

e Treat as separate prediction task?

Loss at Ox_1 — U (in theory a very good idea)



Simplified /concrete/tractable form

Use loss with independent realisation U’ of noise as the anticipated loss Ly.

B = B+ (L(Bir + Uk, Xi, Vi) — L(Bhr + Uj X, Y2)) (7% — ).



What is this scheme?

Let's stare at it:

0, = 0,_1+ Ozk(L(Ok_l + Uy, Xy, Yk) = L(Ok_l + U;ﬁ Xk, Yk)) (e*Uk _ eUk).

e Zeroth order: evaluates loss L(0x_1 + Uk, Xk, Yk), no derivatives

e Two-point scheme: for each data item Xy, Y\ evaluate loss of two parameters 0,1 + Uy
and 6,_; + U}



Benchmark Task: Zeroth order
Linear Regression




Linear Regression

Model (6*,P,0?): well-specified linear regression with random design.
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Linear Regression

Model (6*,P,0?): well-specified linear regression with random design.

unknown true regression coefficient 8* ¢ R?

unknown covariate distribution P on R? and

known noise level o > 0.

Covariates X1, X5, ... are drawn i.i.d. from P.
Response variables are Yj :== X]6* + ¢, with independent Gaussian noise €4 ~ N(0,0?).
LLoss of parameter € on data item X, Y is the square loss

L(B,X,Y) = (XTO — Y)?
Risk (expected loss) of parameter 0 is
E[L(8,X,Y)] = E[(XT(8 —6") —¢)?] = [|0 —6*||5 + 0>

where we write Q := E[XXT] > 0 for the (uncentred) covariance matrix of the covariates.
Excess risk of @ over risk minimiser 6* is

* 12
16— 67IIg



Interaction Protocol: Two-Point Zeroth-order Stochastic Optimization

For k=1,2,...

. Learner picks two query points 0521 and 0,2221
. Data item Xy, Y is drawn from linear regression model behind the scenes

1

2

3. Learner observes losses L(H,((l_)17 X, Yk) and L(0,(<2_)1,X,<7 Yx) of the two query points
4

. Learner recommends evaluation point 6
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Interaction Protocol: Two-Point Zeroth-order Stochastic Optimization

For k=1,2,...

Learner picks two query points 0,(21 and 0,2221

Data item Xk, Yk is drawn from linear regression model behind the scenes

Learner observes |osses L(H,((l_)17 X, Yk) and L(0,(<2_)1,X,<7 Yx) of the two query points

LN =

Learner recommends evaluation point 6

NB: Learner has no access to data X, Y) or gradient VgL(Bf(ljl, X, Yi), -
We are interested in the excess risk of the evaluation point 8y as a function of time k.

The evaluation point 6y is random due to random data Xj, Y7, ... (and randomised queries)
So we evaluate a strategy for Learner by its expected excess risk after k rounds

*112
E(aé”,séf),xl,Yl)...(ef_)l.,ef_)l,xk.,Yk) {Hak 6 HQ}



Impact of the Query model for Linear Regression

If we query at 0, we see the scalar loss

L = (XT0—-Y)? = (XT(0—0%) —¢)?
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Impact of the Query model for Linear Regression

If we query at 6, we see the scalar loss
L = (XT0—-Y)? = (XT(0—0%) —¢)?
If further X ~ P = N(0, /) for simplicity, we have
X(0-6")—¢c ~ N (0, 16 — 6% + 02)
so that the loss is scaled chi-squared
L=(XT(0-6) - ~ (I6-6"+0%)

Multiplicative noise. Very different from additive noise L ~ (||0 o 02) + N(0, const).



How hard is this task?

~

Minimax lower bound for any two-point scheme Vy, 6.

Theorem
Ifd >3 and k > d?, then,
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How hard is this task?

~

Minimax lower bound for any two-point scheme Vy, 6.

Theorem
Ifd >3 and k > d?, then,

N 1 1 d?
inf  sup Ege 6 — 6% 2(1—)(/?2/\02).
Vi@ 6*cBg(0) o I I 162 V2 k

Minimax excess risk lower bound for non-adaptive two-point schemes

Theorem

If d > 6, then for any k =1,2, ...
~ d?
inf sup  Egiy, [|6—6%°] =278 <R2 A 7(Fe2 v 02)).

Vi€EM,0 Q*EBR(O)



BNN meets Linear Regression




Slogan

For our combination of loss and update, (almost) everything is fully explicit linear/quadratic.



Connecting BNN to 2P-00-StochOpt

We query at

9;(3,)1 = 0,1+ Uy 9(k2,)1 = 0,1+ U



Connecting BNN to 2P-00-StochOpt

We query at
o), = 6i_1+ U 0, = 6i_1+ U,

and update using
(XE(Ok—1 + Uk) = Va2 = (XE(Bh1 + Uj) — Yi)?) (7Y% — &%)
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= Ok1+ ak(



Connecting BNN to 2P-00-StochOpt

We query at
0\, = 01+ Uy 0, = 61+ Uy
and update using
0 = 01+ o ((XI(Gkﬂ + Uy) — Yi)* — (X](Ok—1 + U}) — Yk)2) (7Y — elY)
= Ok_1+ o ((Xl(@kq — 0" + Uy) — )’ — (X[ (Ok—1 — 0" + U}) — Gk)z) (e Yk — &),
So with §, = 6, — 0*, we get the recurrence
Ok = Op—1+ ((Xl((skq + Uk) — ex)® — (X[ (k-1 + U}) — 6k)2) (el — el ).
= Gin + o (2AXTdcr — @XT(U — Uy + (XTULY? — (XTUL)2) (™% — o).
_ (/ + 20 (e — eU) (U) — Uk)Txkx;)tsk,1

+ ak(—zekx;(u’k — UL + (XTUL)? — (x;u’k)2) (67 — %)



Does it even make sense on average?

We expressed our update rule in Stochastic Approximation form
O = (I — akAk)dx—1 + axbi
for i.i.d. random matrix A, and vector by given by

A, = f2(e*U* = eUk)(U;{ — Ui ) "X X[,
b, = (—26;(XI(U2 —Uy) + (XIUk)2 - (XIUL)Z) (e_Uk



Does it even make sense on average?

We expressed our update rule in Stochastic Approximation form
Ok = (I — axAk)dk—1 + aby
for i.i.d. random matrix A, and vector by given by
A = —2(e” Y — &) (U] — U )TXiX],
by i= (=26 X[(Uj — Uk) + (X[UL)? — (X[UJ)?) (™% — &%),

We have E[b] = 0 and E[A] = 7Q with constant n := 2E[(e~Y — eV) U] depending on the
scale A of noise U.

In expectation, our update gives
Ex[dx] = </ _aan)akfl

That is exactly gradient descent on the risk ||5||20 + 02, with learning rate Zan.



Case closed?

So the average iterate E[@] — 6* converges to the risk minimiser. Exponentially fast.
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Case closed?

So the average iterate E[f] — 6* converges to the risk minimiser. Exponentially fast.
The metric of interest is excess risk ||5||%? Variance matters!

So let’s work on the expected excess risk after k rounds (whp bounds also interesting):
= = E {Ilékllé} where  Q = E[XXT]

Can we get a recurrence for =7 Yes!



Recurrence for excess risk

Recall our update rule is of the form
Ok = (I — axAk)dk—1 + axby

for i.i.d. random matrix A, and vector by, with E[A] = nQ, and E[b] = E[ATQb] = 0.



Recurrence for excess risk

Recall our update rule is of the form
Ok = (I — axAk)dk—1 + axby

for i.i.d. random matrix A, and vector by, with E[A] = nQ, and E[b] = E[ATQb] = 0.

So the excess risk satisfies

=k = Ex[6]Qd«]
= Ex[((/ — ckAk)Ok—1 + axbi)TQ((/ — axAk)dk—1 + b))
O L Er[(/ — axAR)TQ( — axAk)] 8x—1 + i By [b] Qby]
6 1 {1 = anQ)TQU — axn@Q) + o} Ex [(Ak — 1Q)T Q(Ak = 1Q)]} 0k—1 + o Ex [b] Qby]
< (1 = axnAmin(Q))? + afB) k-1 + agy

abbreviating 8 := A\nax (Ek [0*1/2(Ak —nQ)TQ(Ax — nQ)Qfl/z]) and v = Ei [b] Qby].



Inspecting where we are

Our state of progress so far is
=k < ((1 — o Amin(Q))? + Oziﬂ)fkﬂ + azy

for fixed 1, Amin(@Q), 3 and . The question is how to tune ay. This is now a scalar problem.



Inspecting where we are

Our state of progress so far is
=k < ((1 — o Amin(Q))? + Oziﬁ)fkq + azy

for fixed 1, Amin(@Q), 3 and . The question is how to tune ay. This is now a scalar problem.

Cancelling derivative reveals this bound is optimised in ay at

a* _ UAmm(Q)
K 772>\min(Q)2 + B 4 =

Zk—1

and at that point we obtain

—k—1

B+t
)

Zk-1
gl
—1

S v () e e




Cute ODE upper bound

We can write our recurrence so far as a difference equation

kT Skl 7% Amin( Q)2
—k—1 o 772)\min(Q)2 e ﬁ +

k-1
and solve the corresponding differential equation with equality to find

772)‘min(Q)2 v/
(

and y= —/EL
’ 772Amin Q)2 +ﬁ

III‘III
= =

S with x = ——7 "
T W(yert¥) 7 Amin(Q)? + B

so that all in all the excess risk decays as = = =;/k and the learning rate as o} = 1/k.



More precisely in terms of relevant problem-dependent constants

We arrive at excess risk bound
Theorem

_ 121kd” 480°M, + 107A*dM,
T 2in(Q) k+C

where Kk = i‘\'“a((g)) is the condition number of Q, and M, bounds the ith moment of each

entry of the covariate vector X ~ P.

If A2d is at most of order &2, this is d2/k. Matching lower bounds.



Reflections




To think about

Is the optimal tuning ay = 1/k biologically realistic?

e Learning rate a needs to decay. What decides a new task in the brain?

Optimal tuning for ax depends on zoo of unknowns. How are these estimated?

e Brutal tuning oy = =S may result in risk rising to e“"* before 1/k decay kicks in.

+
Is the noise rate A biologically small compared to o /v/d?

Realism in the model

e More than one neuron
e Depth, architecture
e Other tasks and losses



Conclusion

We saw a simple model for spiking neurons inspired by biology.
We saw a concrete rendering of resulting update rule.
We interpreted it as a zeroth-order two-point iterative scheme.
We evaluated this scheme on a linear regression task.

We derived a rate for the excess risk, and proved that it matches lower bounds.

Let's talk!
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