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Part I

Motivating Problems



I’ll show you three motivating applications:

• A/B Testing

• Self-driving

• Solving Games (MCTS)

Here is what is common:

• The learner needs to identify some aspect of reality

• The learner can choose which data to collect
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A/B Testing



Motivating question

Better to switch from current system to new version or or ?

• A/B testing

• Adaptive clinical trial

• Best arm identification
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Let’s find out in production!

Testing

System

99
%

1%

Best version?



Self-Driving



Motivating question

We are excited about autonomous driving.

Training AI systems (e.g. deep neural networks) takes a lot of data.

Yet not all data are equally valuable/useful.

Let’s optimise and automate the data collection.

Where should I send my prototype for training? to find the best driving strategy ?
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Dragons everywhere

Where should I send my prototype for training to find the best driving strategy ?

• AI system is huge parameterised model

• Lots of possible environments to drive in

• Multiple objectives (safety, efficiency, . . . )

• Feedback (crash/intervention) is very one-sided

Distilled goal:

• Identify Overall safest : fewest crashes in natural environment mix.
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Brutal simplification

Close-by parameters in close-by environments result in close-by outcomes

Often true, but too complicated. Let’s discretise!
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World model (Stochastic Bandit)

The world simplifies to vector + table:

Known natural environment mix

P
( )

= 40%

P
( )

= 30%

P
( )

= 15%

P
( )

= 10%

P
( )

= 5%

Unknown crash probabilities

P
( ∣∣∣∣ ,

)
= 0.1%

P
( ∣∣∣∣ ,

)
= 0.3%

P
( ∣∣∣∣ ,

)
= 0.03%

...

P
( ∣∣∣∣ ,

)
= 2.7%

Together these determine the best parameter on average. Say .



World model (Stochastic Bandit)

The world simplifies to vector + table:

Known natural environment mix

P
( )

= 40%

P
( )

= 30%

P
( )

= 15%

P
( )

= 10%

P
( )

= 5%

Unknown crash probabilities

P
( ∣∣∣∣ ,

)
= 0.1%

P
( ∣∣∣∣ ,

)
= 0.3%

P
( ∣∣∣∣ ,

)
= 0.03%

...

P
( ∣∣∣∣ ,

)
= 2.7%

Together these determine the best parameter on average. Say .



World model (Stochastic Bandit)

The world simplifies to vector + table:

Known natural environment mix

P
( )

= 40%

P
( )

= 30%

P
( )

= 15%

P
( )

= 10%

P
( )

= 5%

Unknown crash probabilities

P
( ∣∣∣∣ ,

)
= 0.1%

P
( ∣∣∣∣ ,

)
= 0.3%

P
( ∣∣∣∣ ,

)
= 0.03%

...

P
( ∣∣∣∣ ,

)
= 2.7%

Together these determine the best parameter on average. Say .



World model (Stochastic Bandit)

The world simplifies to vector + table:

Known natural environment mix

P
( )

= 40%

P
( )

= 30%

P
( )

= 15%

P
( )

= 10%

P
( )

= 5%

Unknown crash probabilities

P
( ∣∣∣∣ ,

)
= 0.1%

P
( ∣∣∣∣ ,

)
= 0.3%

P
( ∣∣∣∣ ,

)
= 0.03%

...

P
( ∣∣∣∣ ,

)
= 2.7%

Together these determine the best parameter on average. Say .



Learning the best Parameter by Driving: Example Interaction
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Solving Games (MCTS)



BAI again

max

Unknown environment

P
( ∣∣∣ )

= 1.75%

P
( ∣∣∣ )

= 3%

P
( ∣∣∣ )

= 2.5%

P
( ∣∣∣ )

= 1%

How to find the best arm by sampling arms ?



Game DAGs

max

min min

max max max

How to find the best move at the root by sampling leaves ?



And Many More



Beyond best arm

Many possible desiderata

• Find the best M arms

• Find all sufficiently good arms

• Arms with combinatorial structure

• Continuously many arms (bandit optimisation)

• Prior knowledge about structure (dosage)

• Personalisation (find a policy: context → arm)

• Multi-objective problems

• Risk measures

• Customers return (!) (MDP)

and challenges

• delays

• censoring

• constraints

• non-stationarity

• comparison feedback



Booming Industry within Multi-Armed Bandit / Testing Literature

Explosion of bandit testing papers with analogous problems:

• Top-m 2017; 2017

• Spectral 2021

• Stratified 2021

• Lipschitz 2019

• Linear 2020; 2020

• Threshold 2017

• MaxGap 2019

• Duelling 2021

• Contextual 2020; 2020

• Pareto 2023

• Minimum 2018

• MCTS 2016

• Markov 2019

• Tail-Risk 2021

• MDP 2021



Part II

Theory and Algorithms



Setup



Setting max

min min

max max max

K -armed bandit µ = (µ1, . . . , µK ).

Each arm k represented by a Bernoulli rate µk in [0, 1].

Observations from arm k are i.i.d. Bernoulli(µk)).

The best action at the root is:

i∗(µ) := argmax
i

min
j

max
k

µleaf(i,j,k)
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Protocol

We work in the setting of fixed confidence δ ∈ (0, 1).

Protocol

For t = 1, 2, . . . , τ :

• Learner picks an arm It ∈ [K ].

• Learner sees Xt ∼ Bernoulli(µIt )

Learner recommends child of the root ı̂

Strategy for Learner specified by

• sampling rule It

• stopping rule τ

• recommendation rule ı̂
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Objectives

Learner is δ-correct if for any bandit instance µ

P
µ
{τ < ∞∧ ı̂ ̸= i∗(µ)} ≤ δ

Goal: minimise sample complexity Eµ[τ ] over all δ-correct strategies.



Sample Complexity Lower Bound



Lower Bounds

Suppose we believe we are in bandit µ.

But we are required to be δ correct in all bandits.

When can we stop and recommend answer i ≡ i∗(µ)?

Hypothesis test! Composite null vs point alternative:

H0 = ¬i :=
{
λ ∈ [0, 1]K

∣∣i∗(λ) ̸= i
}

vs H1 = {µ}
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Passive Warm-up

We denote the relative entropy aka Kullback Leibler divergence from Bernoulli x to Bernoulli

y by kl(x , y) = x ln x
y + (1− x) ln 1−x

1−y .

Fix µ and λ ∈ ¬i∗(µ)

Fact

Fix the number nk of samples form each arm k. If the algorithm is δ-correct at time

τ =
∑K

k=1 nk for both µ, λ, then

K∑
k=1

Nk kl(µk , λk) ≥ kl(δ, 1− δ)

Proof by data compression, tensorisation of KL, δ-PAC.

H := (I1,X1, . . . , Iτ ,Xτ , ı̂) KL

(
alg

P
µ
(H)

∥∥∥∥algPλ (H)

)
≥ kl

(
alg

P
µ
{î ̸= i∗(µ)},

alg

P
λ
{î ̸= i∗(µ)},

)
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{î ̸= i∗(µ)},

)



Passive Warm-up

We denote the relative entropy aka Kullback Leibler divergence from Bernoulli x to Bernoulli

y by kl(x , y) = x ln x
y + (1− x) ln 1−x

1−y .

Fix µ and λ ∈ ¬i∗(µ)

Fact

Fix the number nk of samples form each arm k . If the algorithm is δ-correct at time

τ =
∑K

k=1 nk for both µ, λ, then

K∑
k=1

Nk kl(µk , λk) ≥ kl(δ, 1− δ)

Proof by data compression, tensorisation of KL, δ-PAC.

H := (I1,X1, . . . , Iτ ,Xτ , ı̂)

KL

(
alg

P
µ
(H)

∥∥∥∥algPλ (H)

)
≥ kl

(
alg

P
µ
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Active Story

If we follow the sampling and stopping rules, we get on average Eµ[Nk(τ)] samples from arm k

at time τ .

With that,
K∑

k=1

E
µ
[Nk(τ)] kl(µk , λk) ≥ kl(δ, 1− δ)

Since this has to hold for all λ ∈ ¬i∗(µ), we find

inf
λ∈¬i∗(µ)

K∑
k=1

E
µ
[Nk(τ)] kl(µk , λk) ≥ kl(δ, 1− δ)

Even for the best algorithm, we find

max
w∈△K

inf
λ∈¬i∗(µ)

E
µ
[τ ]

K∑
k=1

wk kl(µk , λk) ≥ kl(δ, 1− δ)
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Lower Bound

Recall that to give answer i we need to reject the composite hypothesis

¬i :=
{
λ ∈ [0, 1]K

∣∣ i∗(λ) ̸= i
}
.

Theorem (Garivier and Kaufmann 2016)

Fix a δ-correct strategy. Then for every bandit model µ

E
µ
[τ ] ≥ T ∗(µ) ln

1

δ

where the characteristic time T ∗(µ) is given by

1

T ∗(µ)
= max

w∈△K

min
λ∈¬i∗(µ)

K∑
k=1

wk kl(µk , λk).
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Example

Unknown environment

P
( ∣∣ )

= 1.75%

P
( ∣∣ )

= 3%

P
( ∣∣ )

= 2.5%

P
( ∣∣ )

= 1%

max

max

min min

min

max max

max

min min

max max max

8995 1987 8655 8545



Algorithms



Algorithm

Lower bound gives us more than just sample complexity.

We also get the oracle weight map

w∗(µ) := max
w∈△K

inf
λ∈¬i∗(µ)

K∑
k=1

wk kl(µk , λk)

What if plug-in empirical mean µ̂(t − 1) and play arm It ∼ w∗(µ̂(t − 1)
)
.

Theorem (Degenne and Koolen, 2019)

Take set-valued interpretation of argmax defining w∗. Then µ 7→ w∗(µ) is

upper-hemicontinuous and convex-valued. Suitable tracking ensures that as µ̂(t) → µ, any

sequence of choices wt ∈ w∗(µ̂(t − 1)) has

min
w∈w∗(µ)

∥wt −w∥∞ → 0 as t → ∞.
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Chernoff Stopping

How to stop as soon as possible?

Need confidence region optimised for problem.

Say answer ı̂t is correct for µ̂(t), and we want to conclude that it is correct for µ.

We need to reject the possibility that any other answer is correct, i.e. the composite hypothesis

¬ı̂t :=
{
λ
∣∣ i∗(λk) ̸= ı̂t

}
.

How to measure the evidence against ¬ı̂t?

Generalised Likelihood Ratio Test (GLRT) Statistic

Λt := ln
maxλ/∈¬ı̂t p(data|λ)
maxλ∈¬ı̂t p(data|λ)

= min
λ∈¬ı̂t

K∑
k=1

Nk(t) kl (µ̂t,k , λk)
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On working with GLRT

One can show that

Theorem (Kaufmann and Koolen, 2021)

For every bandit µ

P
µ

(
∃t : Λt ≥ ln

1

δ
+ O(ln ln t)︸ ︷︷ ︸

GLRT is big

and ı̂t ̸= i∗(µ)︸ ︷︷ ︸
mistake

)
≤ δ.

Cool, so we can stop when Λt ≥ ln 1
δ + O(ln ln t) and safely output ı̂t



Obtaining a sampling rule from GLRT

So we can stop when we see a big value in the GLRT

Λt = min
λ∈¬ı̂t

K∑
k=1

Nk(t) kl (µ̂t,k , λk)

To stop early, the sampling rule should drive Λt up.

The GLRT/round is maximised by sampling with proportions

wt := argmax
w∈△K

min
λ∈¬ı̂t

K∑
k=1

wk kl (µ̂t,k , λk)

Again empirical plug-in of oracle weights.
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Track and Stop Framework

Definition (Track-and-Stop)

• Stop and output ı̂t when Λt = min
λ∈¬ı̂t

K∑
k=1

Nk(t) kl (µ̂t,k , λk) ≥ ln
1

δ
+ O(ln ln t)

• Sample with proportions wt = argmax
w∈△K

min
λ∈¬ı̂t

K∑
k=1

wk kl (µ̂t,k , λk)

Theorem (Garivier and Kaufmann, 2016)

The expected stopping time on any bandit µ is

E
µ
[τ ] ≤

ln 1
δ

maxw∈△K
minλ∈¬i∗(µ)

∑K
k=1 wk kl (µk , λk)

+ small

and this matches lower bounds.
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Upshot of Track-and-Stop

The cost for learning the correct answer is

ln 1
δ

maxw∈△K
minλ∈¬i∗(µ)

∑K
k=1 wk kl (µk , λk)

+ small

Good:

• reliable

• practically efficient

• optimal (stop search for improvements)

Bad:

• Requires solving argmaxw minλ · · ·
• I hid some details



Discussion



Comparison to Racing

Racing samples uniformly, and eliminates arms sequentially until one is left (Even-Dar, Mannor,

and Mansour, 2006).

Can be generalised to MCTS (Teraoka, Hatano, and Takimoto, 2014).

Penultimate arm always sampled equally often as winner.

This by itself can result in a factor 2 sub-optimality in sample complexity.

In addition, how are we comparing arms?



How should one compare two arms?

Let’s compare arm A with arm B, using samples, without knowing their qualities µA or µB .

Fact

If |µA − µ̂A| ≤ ϵA and |µB − µ̂B | ≤ ϵB then∣∣(µA − µB)− (µ̂A − µ̂B)
∣∣ ≤ ϵA + ϵB

A

B

A

B

A

B

Box Ellipse Ideal
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On ϵ > 0

So far, we discussed active (ϵ, δ)-PAC learning for ϵ = 0.

What about ϵ > 0?

Lower bounds can be extended (Degenne and Koolen, 2019).

Yet algorithms more tricky: oracle weights w∗(µ) now a discontinuous function of bandit

instance µ.

Simply ignoring that does not work. Terrible WSP.

Sticky-Track-and-Stop algorithm a “theoretical” fix.

Asymptotic optimality not quite so practical here. Also, only works for finitely many answers.



Computation

In many cases the oracle weight map can be computed efficiently.

In some cases it cannot (Al Marjani and Proutiere, 2021; Ruitong, Ajallooeian, Szepesvári, and

Müller, 2017).

In between are “theoretical” positive case. For example in Pareto Front Identification the

run-time is O(armsdimension) (Crepon, Garivier, and Koolen, 2024).

Somehow every case is different.

Every classical CS problem becomes a pure exploration problem with bandit access to the

inputs.



Conclusion



Conclusion

We saw

• How to decide which samples to collect

• Intuition

• Theory and algorithm design

We saw

• The specific question matters for the test!

• Lots to discuss and discover

Let’s talk!
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