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The idea of this workshop

I’ll sketch a PhD project trajectory.

Please interrupt!



  

What is a PhD project

• Typically 4 years

• One or more supervisors

• Training to be an independent researcher …

• … by doing actual research

• Large academic freedom

• Join community: conferences, workshops, summer schools, internship



  

How to start a PhD project

Need a supervisor with an open position

Don’t wait for the perfect vacancy. Engage!

Check out the PhD program of the European Laboratory for Learning and Intelligent

Systems (ELLIS). They do central recruiting for top AI/ML in Europe.

https://ellis.eu/


  

It all starts with a question

Suppose we are excited about autonomous driving.

As you may know, training AI systems (e.g. deep neural networks) takes a lot of data.

Yet not all data are equally valuable/useful.

Let’s optimise and automate the data collection.

Where should I send my prototype for training?
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Dragons everywhere

Where should I send my prototype for training?

• AI system is huge parameterised model

• Lots of possible environments to drive in

• Multiple objectives (safety, efficiency, …)

• Feedback (crash/intervention) is very one-sided

Distilled goal:

• Identify parameters that cause fewest crashes in natural environment mix.
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Simplify

Close-by parameters in close-by environments result in close-by outcomes

Often true, but too complicated. Let’s discretise!
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World model (Stochastic Bandit)

The world simplifies to vector + table:

Known natural environment mix

P
( )

= 40%

P
( )

= 30%

P
( )

= 15%

P
( )

= 10%

P
( )

= 5%

Unknown crash probabilities

P
( ∣∣∣ ,

)
= 0.1%

P
( ∣∣∣ ,

)
= 0.3%

P
( ∣∣∣ ,

)
= 0.03%

...

P
( ∣∣∣ ,

)
= 2.7%

Together these determine the best parameter on average. Say .
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Learning the best Parameter by Driving: Example Interaction
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Design

So how do we build that learning algorithm?

• Reliable

• Data efficient



  

Theory: Characteristic Time and Oracle Weights

Answering correctly in world µ requires data rejecting all worlds with a different answer.

Theorem (Garivier and Kaufmann, 2016; Russac et al., 2021)

Any δ-correct testing algorithm must, for any world µ, take samples at least

samples(µ) ≥ ln
1

δ
· 1

max
par+env proportionsw

min
world λ with answer

different from that of µ

∑
par p, env e

wp,e KL(µp,e, λp,e)

Why should we care?

• Characterises∗ complexity of each world µ

• Optimal testing algorithm must sample with proportions argmaxw
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What are those oracle weightsw∗(µ)

w∗
e,p(µ)

0.05 0.01 0.13 …

… 0.08



  

Instance-Optimal Algorithms

Sample complexity lower bound at world µ governed by max-min problem:

max
par+env proportionsw

min
world λ with answer

different from that of µ

∑
par p, env e

wp,e KL(µp,e, λp,e)

Main challenge: driving with proportionsw∗(µ) = argmaxw without knowing world µ.



  

Instance-Optimality: Iterative Saddle Point Approach

CW
Ispecialty

Approx. solve saddle point problem iteratively: w1,w2, . . . → w∗(µ)

Main pipeline:

• Get currentwt from saddle point solver.

• Pick parameter and environment (Pt, Et) ∼ wt, see outcome Xt

• Update estimate µ̂t of world.

• Advance the saddle point solver one iteration.

• Add optimism to gradients to induce exploration (µ̂t → µ).

• Regret bounds + concentration + optimism⇒ finite-time guarantee:

Theorem (Degenne, Koolen, and Ménard, 2019)

For every δ ∈ (0, 1) and world µ, the above scheme takes samples bounded by

samples(µ) ≤ char. time · ln 1
δ + o(ln 1

δ )
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Lessons

Content:

• Optimal data collection can be achieved by learning algorithms

• It is inefficient follow the natural environment mix

• It will take many samples to see small differences between good parameters

• Discretising parameters finer makes learning harder …

• …while finer discretisation of environments can help

Meta:

• It will go deep

• Learning/AI/ML will require mix of algorithms, statistics, game theory, optimisation

• Need to zoom out, scale up and iterate. This is hard!
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