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Starting Point

Almost all optimisation is multi-objective when you think about it.

• Vacation : sunny and tasty

• Drug trial : efficacy and toxicity

• Product dev: cost and sustainability

• . . .

Today: not in the mood to scalarise
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Pareto front is {4, 3, 6, 2}.
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Setting

K -armed multi-objective bandit µ⃗ = (µ1, . . . ,µK ).

Each arm k represented by a mean vector µk in Rd .

Observations from arm k are i.i.d. multivariate Gaussian N (µk , I ).

We assume all µk are different.

We say arm k dominates arm i , denoted µk ⪰ µi , if µ
j
k ≥ µj

i in every

dimension j = 1, . . . , d .

The Pareto front is the set of non-dominated arms:

S∗(µ⃗) :=
{
k
∣∣ ∀i ̸= k : µi ̸⪰ µk

}
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Protocol

We work in the setting of fixed-confidence δ ∈ (0, 1).

Protocol

For t = 1, 2, . . . , τ :

• Learner picks an arm It ∈ [K ].

• Learner sees Xt ∼ N (µIt , I )

Learner recommends Pareto front Ŝ ⊆ [K ]



Objectives

Learner is δ-correct if for any bandit instance µ⃗

Pµ⃗

{
τ < ∞∧ Ŝ ̸= S∗(µ⃗)

}
≤ δ

Goal: minimise sample complexity Eµ⃗[τ ] over all δ-correct strategies.



Background Theory: Lower Bound

Define the alternatives to µ⃗ by

Alt(µ⃗) :=
{
λ⃗ ∈ RK×d

∣∣ S∗(λ⃗) ̸= S∗(µ⃗)
}
.

NB recall S∗ is Pareto front

Theorem (Garivier and Kaufmann 2016)

Fix a δ-correct strategy. Then for every bandit model µ⃗

Eµ⃗[τ ] ≥ T ∗(µ⃗) ln
1

δ

where the characteristic time T ∗(µ⃗) is given by

1

T ∗(µ⃗)
= max

w∈△K

min
λ⃗∈Alt(µ⃗)

1

2

K∑
k=1

wk ∥µk − λk∥2 .
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Background Theory II: Algorithm

Idea is consider the oracle weight map

w∗(µ⃗) := argmax
w∈△K

min
λ⃗∈Alt(µ⃗)

1

2

K∑
k=1

wk ∥µk − λk∥2

and track the plug-in estimate: sample arm It ∼ w∗
(
ˆ⃗µ(t − 1)

)
.

Theorem (Degenne and Koolen, 2019)

Take set-valued interpretation of argmax defining w∗. Then

µ⃗ 7→ w∗(µ⃗) is upper-hemicontinuous and convex-valued. Suitable

tracking ensures that as ˆ⃗µ(t) → µ⃗, any choice wt ∈ w∗( ˆ⃗µ(t − 1)) have

min
w∈w∗(µ⃗)

∥wt −w∥∞ → 0

Track-and-Stop is asymptotically optimal: lim supδ→0
Eµ⃗[τ ]

ln 1
δ

= T ∗(µ⃗).
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Contribution

Kone, Kaufmann, and Richert (2023) consider identifying the Pareto

Front among K arms in d dimensions.

• Asymptotically optimal algorithm for Pareto Front Identification.

• Computations in exponential O(dK ) time per round.

Our Contribution

• Computations in polynomial O(K d) time per round.
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What do we need to calculate

Degenne, Koolen, and Ménard (2019): sufficient to implement

best-response oracle (= gradient)

µ⃗,w 7→ min
λ⃗∈Alt(µ⃗)

1

2

K∑
k=1

wk ∥µk − λk∥2

Objective is convex, but domain Alt(µ⃗) is not.

Optimal transport problem
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Being in the Alternative

Recall

λ⃗ ∈ Alt(µ⃗) i.e. S∗(λ⃗) ̸= S∗(µ⃗)

Having a different Pareto front means either

• An arm on the front in µ⃗ is off the front in λ⃗, or

• An arm off the front in µ⃗ is on the front in λ⃗.



Taking arm 4 off the Pareto Front
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Example: we dominate arm 4 using arm 6 by moving each to the

weighted mid-point in non-dominated coordinates.
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Putting arm 1 on the Pareto Front
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Example: we make point 1 dominant by moving it north-east, and then

moving all dominators out of the way.
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The heart of the insight

The cost for moving point 1 onto the front is:

min
λ1

w1

2
||µ1 − λ1||2 +

∑
k∈S∗(µ⃗)

wk

2
min
j∈[d ]

(µj
k − λj

1)
2
+

and that is

min
ϕ:S∗(µ⃗)→[d ]

min
λ1

w1

2
||µ1 − λ1||2 +

∑
k∈S∗(µ⃗)

wk

2
(µ

ϕ(k)
k − λ

ϕ(k)
1 )2+︸ ︷︷ ︸

separable convex problem

Not all ϕ : S∗(µ⃗) → [d ] need to be attempted.

Only
(
K+d−1
d−1

)
due to geometry of Rd .
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Conclusion

With that, everything slots in place and we obtain an algorithm for

Pareto Front Identification with

• asymptotically optimal sample complexity

• polynomial time cost per round

Now interested in going beyond

• Gaussian

• ϵ = 0

• independence

Thanks!
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