Sequential Learning of the Pareto Front in Multi-objective Bandits

Wouter M. Koolen

CWI

UNIVERSITY OF TWENTE.

ELLIS ILIR Workhop
Oberwolfach
Tuesday $27^{\text {th }}$ February, 2024

Team Effort

UVPA ENS DE LYON

Élise Crepon

Aurélien Garivier

Outline

1. Motivation

2. Setting

3. Our Results

4. Those Computations

5. Conclusion

Starting Point

Almost all optimisation is multi-objective when you think about it.

- Vacation : sunny and tasty
- Drug trial : efficacy and toxicity
- Product dev: cost and sustainability

Starting Point

Almost all optimisation is multi-objective when you think about it.

- Vacation : sunny and tasty
- Drug trial : efficacy and toxicity
- Product dev: cost and sustainability
- ...

Today: not in the mood to scalarise

Pareto Front

Pareto Front

Pareto front is $\{4,3,6,2\}$.

Outline

1. Motivation

2. Setting
3. Our Results
4. Those Computations
5. Conclusion

Setting

K-armed multi-objective bandit $\vec{\mu}=\left(\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{K}\right)$.

Setting

K-armed multi-objective bandit $\vec{\mu}=\left(\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{K}\right)$.
Each arm k represented by a mean vector $\boldsymbol{\mu}_{k}$ in \mathbb{R}^{d}.

Setting

K-armed multi-objective bandit $\vec{\mu}=\left(\mu_{1}, \ldots, \boldsymbol{\mu}_{K}\right)$.
Each arm k represented by a mean vector $\boldsymbol{\mu}_{k}$ in \mathbb{R}^{d}.
Observations from arm k are i.i.d. multivariate Gaussian $\mathcal{N}\left(\boldsymbol{\mu}_{k}, l\right)$.

Setting

K-armed multi-objective bandit $\vec{\mu}=\left(\mu_{1}, \ldots, \boldsymbol{\mu}_{K}\right)$.
Each arm k represented by a mean vector $\boldsymbol{\mu}_{k}$ in \mathbb{R}^{d}.
Observations from arm k are i.i.d. multivariate Gaussian $\mathcal{N}\left(\boldsymbol{\mu}_{k}, l\right)$.
We assume all $\boldsymbol{\mu}_{k}$ are different.

Setting

K-armed multi-objective bandit $\vec{\mu}=\left(\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{K}\right)$.
Each arm k represented by a mean vector $\boldsymbol{\mu}_{k}$ in \mathbb{R}^{d}.
Observations from arm k are i.i.d. multivariate Gaussian $\mathcal{N}\left(\boldsymbol{\mu}_{k}, l\right)$.
We assume all $\boldsymbol{\mu}_{k}$ are different.
We say arm k dominates arm i, denoted $\boldsymbol{\mu}_{k} \succeq \boldsymbol{\mu}_{i}$, if $\mu_{k}^{j} \geq \mu_{i}^{j}$ in every dimension $j=1, \ldots, d$.

Setting

K-armed multi-objective bandit $\overrightarrow{\boldsymbol{\mu}}=\left(\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{K}\right)$.
Each arm k represented by a mean vector $\boldsymbol{\mu}_{k}$ in \mathbb{R}^{d}.
Observations from arm k are i.i.d. multivariate Gaussian $\mathcal{N}\left(\boldsymbol{\mu}_{k}, l\right)$.
We assume all $\boldsymbol{\mu}_{k}$ are different.
We say arm k dominates arm i, denoted $\boldsymbol{\mu}_{k} \succeq \boldsymbol{\mu}_{i}$, if $\mu_{k}^{j} \geq \mu_{i}^{j}$ in every dimension $j=1, \ldots, d$.

The Pareto front is the set of non-dominated arms:

$$
S^{*}(\overrightarrow{\boldsymbol{\mu}}):=\left\{k \mid \forall i \neq k: \boldsymbol{\mu}_{i} \nsucceq \boldsymbol{\mu}_{k}\right\}
$$

Protocol

We work in the setting of fixed-confidence $\delta \in(0,1)$.

Protocol

For $t=1,2, \ldots, \tau$:

- Learner picks an arm $I_{t} \in[K]$.
- Learner sees $X_{t} \sim \mathcal{N}\left(\mu_{I_{t}}, l\right)$

Learner recommends Pareto front $\hat{S} \subseteq[K]$

Objectives

Learner is δ-correct if for any bandit instance $\vec{\mu}$

$$
\mathbb{P}_{\vec{\mu}}\left\{\tau<\infty \wedge \hat{S} \neq S^{*}(\vec{\mu})\right\} \leq \delta
$$

Goal: minimise sample complexity $\mathbb{E}_{\vec{\mu}}[\tau]$ over all δ-correct strategies.

Background Theory: Lower Bound

Define the alternatives to $\vec{\mu}$ by

$$
\operatorname{Alt}(\vec{\mu}):=\left\{\overrightarrow{\boldsymbol{\lambda}} \in \mathbb{R}^{K \times d} \mid S^{*}(\overrightarrow{\boldsymbol{\lambda}}) \neq S^{*}(\overrightarrow{\boldsymbol{\mu}})\right\} .
$$

NB recall S^{*} is Pareto front

Background Theory: Lower Bound

Define the alternatives to $\vec{\mu}$ by

$$
\operatorname{Alt}(\vec{\mu}):=\left\{\overrightarrow{\boldsymbol{\lambda}} \in \mathbb{R}^{K \times d} \mid S^{*}(\vec{\lambda}) \neq S^{*}(\vec{\mu})\right\} .
$$

NB recall S^{*} is Pareto front

Theorem (Garivier and Kaufmann 2016)

Fix a δ-correct strategy. Then for every bandit model $\vec{\mu}$

$$
\mathbb{E}_{\vec{\mu}}[\tau] \geq T^{*}(\vec{\mu}) \ln \frac{1}{\delta}
$$

where the characteristic time $T^{*}(\vec{\mu})$ is given by

$$
\frac{1}{T^{*}(\overrightarrow{\boldsymbol{\mu}})}=\max _{w \in \Delta_{K}} \min _{\overrightarrow{\boldsymbol{\lambda}} \in \operatorname{Alt}(\overrightarrow{\boldsymbol{\mu}})} \frac{1}{2} \sum_{k=1}^{K} w_{k}\left\|\boldsymbol{\mu}_{k}-\boldsymbol{\lambda}_{k}\right\|^{2} .
$$

Background Theory II: Algorithm

Idea is consider the oracle weight map

$$
\boldsymbol{w}^{*}(\overrightarrow{\boldsymbol{\mu}}):=\underset{\boldsymbol{w} \in \triangle_{K}}{\arg \max } \min _{\overrightarrow{\boldsymbol{\lambda}} \in \operatorname{Alt}(\overrightarrow{\boldsymbol{\mu}})} \frac{1}{2} \sum_{k=1}^{K} w_{k}\left\|\boldsymbol{\mu}_{k}-\boldsymbol{\lambda}_{k}\right\|^{2}
$$

and track the plug-in estimate: sample arm $I_{t} \sim \boldsymbol{w}^{*}(\hat{\overrightarrow{\boldsymbol{\mu}}}(t-1))$.

Background Theory II: Algorithm

Idea is consider the oracle weight map

$$
\boldsymbol{w}^{*}(\overrightarrow{\boldsymbol{\mu}}):=\underset{\boldsymbol{w} \in \triangle_{K}}{\arg \max } \min _{\overrightarrow{\boldsymbol{\lambda}} \in \operatorname{Alt}(\overrightarrow{\boldsymbol{\mu}})} \frac{1}{2} \sum_{k=1}^{K} w_{k}\left\|\boldsymbol{\mu}_{k}-\boldsymbol{\lambda}_{k}\right\|^{2}
$$

and track the plug-in estimate: sample arm $I_{t} \sim \boldsymbol{w}^{*}(\hat{\overrightarrow{\boldsymbol{\mu}}}(t-1))$.

Theorem (Degenne and Koolen, 2019)

Take set-valued interpretation of arg max defining \boldsymbol{w}^{*}. Then $\overrightarrow{\boldsymbol{\mu}} \mapsto \boldsymbol{w}^{*}(\overrightarrow{\boldsymbol{\mu}})$ is upper-hemicontinuous and convex-valued. Suitable tracking ensures that as $\hat{\overrightarrow{\boldsymbol{\mu}}}(t) \rightarrow \overrightarrow{\boldsymbol{\mu}}$, any choice $\boldsymbol{w}_{t} \in \boldsymbol{w}^{*}(\hat{\overrightarrow{\boldsymbol{\mu}}}(t-1))$ have

$$
\min _{\boldsymbol{w} \in \boldsymbol{w}^{*}(\overrightarrow{\boldsymbol{\mu}})}\left\|\boldsymbol{w}_{t}-\boldsymbol{w}\right\|_{\infty} \rightarrow 0
$$

Track-and-Stop is asymptotically optimal: $\lim \sup _{\delta \rightarrow 0} \frac{\mathbb{E}_{\vec{\mu}}[\tau]}{\ln \frac{1}{\delta}}=T^{*}(\overrightarrow{\boldsymbol{\mu}})$.

Outline

1. Motivation

2. Setting
3. Our Results
4. Those Computations
5. Conclusion

Contribution

Kone, Kaufmann, and Richert (2023) consider identifying the Pareto Front among K arms in d dimensions.

- Asymptotically optimal algorithm for Pareto Front Identification.
- Computations in exponential $O\left(d^{K}\right)$ time per round.

Our Contribution

- Computations in polynomial $O\left(K^{d}\right)$ time per round.

Outline

1. Motivation

2. Setting

3. Our Results
4. Those Computations

5. Conclusion

What do we need to calculate

Degenne, Koolen, and Ménard (2019): sufficient to implement best-response oracle (= gradient)

$$
\overrightarrow{\boldsymbol{\mu}}, \boldsymbol{w} \mapsto \min _{\overrightarrow{\boldsymbol{\lambda}} \in \operatorname{Alt}(\overrightarrow{\boldsymbol{\mu}})} \frac{1}{2} \sum_{k=1}^{K} w_{k}\left\|\boldsymbol{\mu}_{k}-\boldsymbol{\lambda}_{k}\right\|^{2}
$$

What do we need to calculate

Degenne, Koolen, and Ménard (2019): sufficient to implement best-response oracle (= gradient)

$$
\overrightarrow{\boldsymbol{\mu}}, \boldsymbol{w} \mapsto \min _{\overrightarrow{\boldsymbol{\lambda}} \in \operatorname{Alt}(\overrightarrow{\boldsymbol{\mu}})} \frac{1}{2} \sum_{k=1}^{K} w_{k}\left\|\boldsymbol{\mu}_{k}-\boldsymbol{\lambda}_{k}\right\|^{2}
$$

Objective is convex, but domain $\operatorname{Alt}(\overrightarrow{\boldsymbol{\mu}})$ is not.

What do we need to calculate

Degenne, Koolen, and Ménard (2019): sufficient to implement best-response oracle (= gradient)

$$
\overrightarrow{\boldsymbol{\mu}}, \boldsymbol{w} \mapsto \min _{\overrightarrow{\boldsymbol{\lambda}} \in \operatorname{Alt}(\overrightarrow{\boldsymbol{\mu}})} \frac{1}{2} \sum_{k=1}^{K} w_{k}\left\|\boldsymbol{\mu}_{k}-\boldsymbol{\lambda}_{k}\right\|^{2}
$$

Objective is convex, but domain $\operatorname{Alt}(\vec{\mu})$ is not.
Optimal transport problem

Being in the Alternative

Recall

$$
\vec{\lambda} \in \operatorname{Alt}(\vec{\mu}) \quad \text { i.e. } \quad S^{*}(\vec{\lambda}) \neq S^{*}(\vec{\mu})
$$

Having a different Pareto front means either

- An arm on the front in $\vec{\mu}$ is off the front in $\vec{\lambda}$, or
- An arm off the front in $\vec{\mu}$ is on the front in $\vec{\lambda}$.

Taking arm 4 off the Pareto Front

Taking arm 4 off the Pareto Front

Example: we dominate arm 4 using arm 6 by moving each to the weighted mid-point in non-dominated coordinates.

Putting arm 1 on the Pareto Front

Putting arm 1 on the Pareto Front

Example: we make point 1 dominant by moving it north-east, and then moving all dominators out of the way.

The heart of the insight

The cost for moving point 1 onto the front is:

$$
\min _{\lambda_{1}} \frac{w_{1}}{2}\left\|\boldsymbol{\mu}_{1}-\lambda_{1}\right\|^{2}+\sum_{k \in S^{*}(\vec{\mu})} \frac{w_{k}}{2} \min _{j \in[d]}\left(\boldsymbol{\mu}_{k}^{j}-\lambda_{1}^{j}\right)_{+}^{2}
$$

The heart of the insight

The cost for moving point 1 onto the front is:

$$
\min _{\lambda_{1}} \frac{w_{1}}{2}\left\|\boldsymbol{\mu}_{1}-\boldsymbol{\lambda}_{1}\right\|^{2}+\sum_{k \in S^{*}(\vec{\mu})} \frac{w_{k}}{2} \min _{j \in[d]}\left(\boldsymbol{\mu}_{k}^{j}-\lambda_{1}^{j}\right)_{+}^{2}
$$

and that is

$$
\min _{\phi: S^{*}(\overrightarrow{\boldsymbol{\mu}}) \rightarrow[d]} \underbrace{\min _{\boldsymbol{\lambda}_{1}} \frac{w_{1}}{2}\left\|\boldsymbol{\mu}_{1}-\boldsymbol{\lambda}_{1}\right\|^{2}+\sum_{k \in S^{*}(\overrightarrow{\boldsymbol{\mu}})} \frac{w_{k}}{2}\left(\boldsymbol{\mu}_{k}^{\phi(k)}-\boldsymbol{\lambda}_{1}^{\phi(k)}\right)_{+}^{2}}_{\text {separable convex problem }}
$$

The heart of the insight

The cost for moving point 1 onto the front is:

$$
\min _{\lambda_{1}} \frac{w_{1}}{2}\left\|\boldsymbol{\mu}_{1}-\boldsymbol{\lambda}_{1}\right\|^{2}+\sum_{k \in S^{*}(\vec{\mu})} \frac{w_{k}}{2} \min _{j \in[d]}\left(\boldsymbol{\mu}_{k}^{j}-\lambda_{1}^{j}\right)_{+}^{2}
$$

and that is

$$
\min _{\phi: S^{*}(\overrightarrow{\boldsymbol{\mu}}) \rightarrow[d]} \underbrace{\min _{\boldsymbol{\lambda}_{1}} \frac{w_{1}}{2}\left\|\boldsymbol{\mu}_{1}-\boldsymbol{\lambda}_{1}\right\|^{2}+\sum_{k \in S^{*}(\overrightarrow{\boldsymbol{\mu}})} \frac{w_{k}}{2}\left(\boldsymbol{\mu}_{k}^{\phi(k)}-\boldsymbol{\lambda}_{1}^{\phi(k)}\right)_{+}^{2}}_{\text {separable convex problem }}
$$

Not all $\phi: S^{*}(\vec{\mu}) \rightarrow[d]$ need to be attempted.
Only $\binom{K+d-1}{d-1}$ due to geometry of \mathbb{R}^{d}.

Outline

1. Motivation

2. Setting
3. Our Results
4. Those Computations
5. Conclusion

Conclusion

With that, everything slots in place and we obtain an algorithm for Pareto Front Identification with

- asymptotically optimal sample complexity
- polynomial time cost per round

Now interested in going beyond

- Gaussian
- $\epsilon=0$
- independence

Thanks!

References

c Degenne, R. and W. M. Koolen (Dec. 2019). "Pure
Exploration with Multiple Correct Answers". In: Advances in
Neural Information Processing Systems (NeurIPS) 32.
© Degenne, R., W. M. Koolen, and P. Ménard (Dec. 2019). "Non-Asymptotic Pure Exploration by Solving Games". In: Advances in Neural Information Processing Systems (NeurIPS) 32.
冨 c Garivier, A. and E. Kaufmann (June 2016). "Optimal Best Arm Identification with Fixed Confidence". In: 29th Annual Conference on Learning Theory. Vol. 49. Proceedings of Machine Learning Research.
目 c Kone, C., E. Kaufmann, and L. Richert (2023). "Adaptive Algorithms for Relaxed Pareto Set Identification". In: arXiv preprint arXiv:2307.00424.

