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Motivating Example

Every week I face the choice

2h ± 10 min 2h ± 30 min

I want:

• Total travel time ≤ best fixed carrier + small learning overhead

• By choosing my carrier adaptively (possibly randomised)

• With full information of past service

• Without relying on i.i.d. assumption
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Why is this important/interesting

• Fundamental problem with strong connections to

• (martingale) deviation inequalities

• convex optimisation and duality

• (stochastic) gradient descent

• uncertainty quantification

• bandit problems (partial information)

• reinforcement learning

• game theory (saddle point computation)

• (generic) chaining

• differential privacy

• Boosting

• . . .

• Theory well-developed for single loss scale. (Freund and Schapire,

1997; De Rooij et al., 2014; Koolen, Grünwald, and Van Erven,

2016)

• Similar treatment for multi-scale was lacking.

• Existing algorithm templates too rigid

• No multi-scale Bernstein Inequality
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Supervised Learning Theory

What is Statistical Learning

• Receive batch of i.i.d. labelled examples

• Output predictor for new data (e.g. by ERM)

• Prove risk bound using concentration (PAC, VC dim)

What is Online Learning

• Cancel the i.i.d. assumption (⇒ adversary)

• Algorithm predicts/updates sequentially (e.g. by online gradient

descent)

• Prove regret bound using game theory (minimax)

We say a single algorithm exploits Luckiness if

• Regret bounded (by minimax rate)

• Risk bounded by fast rate if i.i.d. with margin

A learning problem is Multi-Scale if

• range of losses varies wildly between predictions/actions
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Philosophical Note

The learner is uncertain about the overall best predictor.

Need to maintain uncertainty. Vague: many implementations.

Online learning provides a crisp framework with a scalar objective.

Hence it informs us about optimal/good/appropriate ways to maintain

uncertainty.

The answer is far from Bayesian (or perhaps profound generalisation)
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Formal Setup

Fix number K of actions with known loss ranges σ ∈ [0,∞)K

Protocol

for t = 1, 2, . . .

• Learner picks probability distribution wt ∈ △K on actions

• Adversary sets action losses ℓt ∈ RK with |ℓkt | ≤ σk

• Learner incurs expected loss w⊺
t ℓt

Definition (Regret)

The regret after T rounds with respect to action k is

Rk
T =

T∑
t=1

w⊺
t ℓt −

T∑
t=1

ℓkt

Question

Can Learner keep Rk
T ≤ σk

√
T?
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First Step

Consider Follow-the-Regularised-Leader (FTRL) template

wt = argmin
w∈△K

⟨w,Lt−1⟩+ Dη(w,u)

with cumulative losses Lt =
∑t

s=1 ℓs and multi-scale entropy

Dη(w,u) =
∑
k

wk ln
wk

uk
− wk + uk

ηk
.

Theorem (Bubeck et al., 2019)

FTRL with learning rate ηk = 1
σk

√
2 ln(K

σk

σmin
)

T has regret bounded by

Rk
T ≤ σk

√
T ln(K σk

σmin
).

Matching worst-case regret lower bound.
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Are we there yet?

Luckiness?

What if losses ℓ1, ℓ2, . . . turn out to be i.i.d. after all?

Actually, the worst-case lower bound example is of that kind.

Luckiness with Margin?

Losses sampled i.i.d. ℓt ∼ P, where mean loss vector µ = E[ℓ] exhibits
positive gap ∆ = µ(2) − µ(1) > 0

Still no cigar. Ω(
√
T ) regret.

Strong Contrast

For same-scale case there is a single algorithm with

• Worst-case regret
√
T lnK (matching lower bound)

• Stochastic+gap regret O(1/∆), a constant(!)

• Interpolates spectrum by data-dependent
√
VT lnK bound.



Are we there yet?

Luckiness?

What if losses ℓ1, ℓ2, . . . turn out to be i.i.d. after all?

Actually, the worst-case lower bound example is of that kind.

Luckiness with Margin?

Losses sampled i.i.d. ℓt ∼ P, where mean loss vector µ = E[ℓ] exhibits
positive gap ∆ = µ(2) − µ(1) > 0

Still no cigar. Ω(
√
T ) regret.

Strong Contrast

For same-scale case there is a single algorithm with

• Worst-case regret
√
T lnK (matching lower bound)

• Stochastic+gap regret O(1/∆), a constant(!)

• Interpolates spectrum by data-dependent
√
VT lnK bound.



Are we there yet?

Luckiness?

What if losses ℓ1, ℓ2, . . . turn out to be i.i.d. after all?

Actually, the worst-case lower bound example is of that kind.

Luckiness with Margin?

Losses sampled i.i.d. ℓt ∼ P, where mean loss vector µ = E[ℓ] exhibits
positive gap ∆ = µ(2) − µ(1) > 0

Still no cigar. Ω(
√
T ) regret.

Strong Contrast

For same-scale case there is a single algorithm with

• Worst-case regret
√
T lnK (matching lower bound)

• Stochastic+gap regret O(1/∆), a constant(!)

• Interpolates spectrum by data-dependent
√
VT lnK bound.



Are we there yet?

Luckiness?

What if losses ℓ1, ℓ2, . . . turn out to be i.i.d. after all?

Actually, the worst-case lower bound example is of that kind.

Luckiness with Margin?

Losses sampled i.i.d. ℓt ∼ P, where mean loss vector µ = E[ℓ] exhibits
positive gap ∆ = µ(2) − µ(1) > 0

Still no cigar. Ω(
√
T ) regret.

Strong Contrast

For same-scale case there is a single algorithm with

• Worst-case regret
√
T lnK (matching lower bound)

• Stochastic+gap regret O(1/∆), a constant(!)

• Interpolates spectrum by data-dependent
√
VT lnK bound.



Are we there yet?

Luckiness?

What if losses ℓ1, ℓ2, . . . turn out to be i.i.d. after all?

Actually, the worst-case lower bound example is of that kind.

Luckiness with Margin?

Losses sampled i.i.d. ℓt ∼ P, where mean loss vector µ = E[ℓ] exhibits
positive gap ∆ = µ(2) − µ(1) > 0

Still no cigar. Ω(
√
T ) regret.

Strong Contrast

For same-scale case there is a single algorithm with

• Worst-case regret
√
T lnK (matching lower bound)

• Stochastic+gap regret O(1/∆), a constant(!)

• Interpolates spectrum by data-dependent
√
VT lnK bound.



Main Result

Muscada Algorithm

wt := argmin
w∈△K

⟨w,Lt−1 + µt−1⟩+ Dηt−1 (w,u)

where µk
t = σk

√
vt ln(K

σk

σmin
)

vt = 4
t∑

s=1

varw̃s (ℓs)

⟨w̃s ,σ2⟩
with w̃k

t ∝ wk
t η

k
t−1

ηkt =
1

σk

√
ln(K σk

σmin
)

vt
≈ 2

σ2
k

dµk
t

dvt

Theorem (Main Result)

Muscada guarantees Rk
T ≤ 2µk

T .

• Sharpens worst-case regret bound of Bubeck et al. 2019 as vt ≤ t.

• In i.i.d. setting with gap ∆, expected regret is constant

E[µk∗

T ] ≤ Kσ2
max

∆
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Proof: worst-case regret bound

Recall regret Rk
t =

∑t
s=1⟨ws , ℓs⟩ −

∑t
s=1 ℓ

k
s . Define potential function

Φt := Φ(Rt − µt ,ηt) = max
w∈△K

⟨w,Rt − µt⟩ − Dηt (w,u).

Lemma

Muscada (wt+1 = argmax . . . ) ensures 0 = Φ0 ≥ Φ1 ≥ . . ..

Proof.

Φt ≤ Φ(Rt − µt ,ηt−1) η 7→ Dη decr.

= Φ(Rt − µt−1 − 1
2ηt−1σ

2∆vt ,ηt−1) by def. of µt

= Φ(Rt−1 + ⟨wt ,µt⟩ − µt−1,ηt−1) by def. of ∆vt

= max
w∈△K

⟨w,Rt−1 − µt−1⟩ − Dηt−1(w,u) by def. of Φ

= ⟨wt ,Rt−1 − µt−1⟩ − Dηt−1(wt ,u) by def. of wt

≤ max
w∈△K

⟨w,Rt−1 − µt−1⟩ − Dηt−1(w,u) since wt ∈ △K

= Φ(Rt−1 − µt−1,ηt−1) = Φt−1 by def. of Φ, Φt .
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Proof: worst-case regret bound, ctd

Lemma

The regret compared to expert k is Rk
T ≤ 2σk

√
vt ln(K

σk

σmin
).

Proof.

We have 0 ≥ ΦT = max
w∈△K

⟨w,RT − µT ⟩ − DηT
(w,u)

≥ ⟨ek ,RT − µT ⟩ − DηT
(ek ,u)

.

Unpacking the divergence, we get

Rk
T ≤ µk

T + DηT
(ek ,u) = µk

T +
− ln uk − 1

ηkT
+
∑
j

uj

ηjT

= σk

√
vt ln(K

σk

σmin
) + σk

√
vt

− ln uk − 1√
ln(K σk

σmin
)
+
√
vt
∑
j

σjuj√
ln(K σk

σmin
)

We pick uj =
1
K · σmin

σj
to get Rk

T ≤ √
vt
(
2σk

√
ln(K σk

σmin
) + σmin

)



Proof: worst-case regret bound, ctd

Lemma

The regret compared to expert k is Rk
T ≤ 2σk

√
vt ln(K

σk

σmin
).

Proof.

We have 0 ≥ ΦT = max
w∈△K

⟨w,RT − µT ⟩ − DηT
(w,u)

≥ ⟨ek ,RT − µT ⟩ − DηT
(ek ,u)

.

Unpacking the divergence, we get

Rk
T ≤ µk

T + DηT
(ek ,u) = µk

T +
− ln uk − 1

ηkT
+
∑
j

uj

ηjT

= σk

√
vt ln(K

σk

σmin
) + σk

√
vt

− ln uk − 1√
ln(K σk

σmin
)
+

√
vt
∑
j

σjuj√
ln(K σk

σmin
)

We pick uj =
1
K · σmin

σj
to get Rk

T ≤ √
vt
(
2σk

√
ln(K σk

σmin
) + σmin

)



Proof: luckiness

Now assume losses are i.i.d. ℓt ∼ P with gap µ(2)− µ(1) ≥ ∆ > 0.

Lemma (Massart/Bernstein consequence of gap assumption)

Under the gap condition, there is a constant kM such that

EP[∆vt ] ≤ kMEP[w
⊺
t ℓt − ℓk

∗

t ],

Lemma

The pseudo-regret compared to the best expert k∗ = argmink E[ℓk ] is
constant.

Proof.

So then

E[Rk∗

T ] ≤ E[σk∗
√
vT . . .] ≤ σk∗

√
E[vT ] . . . ≤ σk∗

√
kM E[Rk∗

T ] . . ..
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Saddle Point Computation

Now suppose I am paranoid about travel time.

10 90

0 −10

What is the saddle point? (Hint: it is pure)

Multi-scale: and of scale 90 while and of scale 10.
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In General

Problem

Given (large) payoff matrix M. Compute an ϵ-equilibrium (p, q):

max
j

p⊺Mej −min
i

e⊺i Mq ≤ ϵ.

Popular approach (Freund and Schapire, 1999)

Run online learners pt and qt on loss vectors Mqt and −M⊺pt .

Question

Does multi-scale knowledge help?

Yes, sub-optimality gap improves from σmax/
√
T to σsaddle-point/

√
T .

With optimism (Rakhlin and Sridharan, 2013), empirically σsaddle-point/T .
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Thanks!
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