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Introduction



Starting point: Ville’s Result

Fix filtered probability space (Q2, F, (Fp)n, P) and (tail) event A € F. Then

Theorem
P(A) = 0 iff there is a test martingale (M), for P tending to co on A.



Why is that useful

If P is true and P(A) = 0 then A will not happen.

A martingale (M,), diverging on A allows detecting A in finite time with Type-1 error

control.

To do so, we declare A is happening at 7 = inf{n | M, > 1/a}.

e If A happens, we detect it for sure

e Under P, probability of (false) detection is < a.

Definition
A stopping time 7 detects the event A € F in finite time with confidence « if
AC{r < o0} and P{T < o0} < av.



Examples of Ville's result

For i.i.d. Bernoulli(1/2), can detect in finite time:

e SLLN: running average converges to 1/2

e LIL: deviations from 1/2 of order \/@



Composite Upgrade



Question

Suppose we face i.i.d. Bernoulli(p) for unknown p € [0, 1].
The running average of outcomes will converge.

But can we detect divergence in finite time?

For each fixed p there is a divergence detector.

But it may never happen that all detectors fire.



First attempt

We are interested in a composite null P.

We say event A is P-polar if P(A) =0 for all P € P.

Maybe
Conjecture

A is P-polar iff there is a P-test (super)martingale tending to co on A.

But the universe says no.



Fundamental Problems

Some P-polar sets
e are finite-time detectable, but not by P-(super)martingales.
e are not finite-time detectable at all.

Example
Let P = {P, | n € N}, where P, deterministically outputs sequence 0" - 1 - O

Let A= {0}, so A is P-polar.
Any purported finite-time detection of A must occur seeing some prefix 0.

But then P,(detection) =1 for all n > m. No error control



Successful attempt

Definition

Non-negative (E,), is an E-process for P if

Ep[E;] <1 for any P € P and stopping time 7

Let's define the minimax finite-time detection probability:

Definition
*(A) = inf sup P(T < oo
M( ) TET:AC{r<00} Pe?’ (T )
We show
Theorem

w*(A) = 0 iff there is an E-process for P tending to oo on A.



Examples




Divergence

We focus on X1, Xp, ... i.i.d. from P € P for different composite P.

We write X, = 1 3™ | X; for the running average.

We focus on the event

Adiv = {the limit lim X, does not exist}
n—o00



Divergence
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X, diverges iff there are rational / < u s.t. both X, <land X, > u infinitely often.



Examples

Bernoulli (Positive) Example



Question

Let
P = {P|Pisi.i.d. Bernoulli}

Recall x, = %27:1 x;. Consider the event

Adiv = {Xn does not converge}



Question

Let
P = {P|Pisi.i.d. Bernoulli}

Recall x, = %27:1 x;. Consider the event

Adiv = {Xn does not converge}

E-process diverging on Agiv?



Bernoulli E-process explicit construction: E-values

For i.i.d. Bernoulli p
1+ B(x —p)
<

is a E-value for p as long as ﬁ <p %.



Bernoulli E-process explicit construction: E-values

For i.i.d. Bernoulli p

1+ B(x —p)
is a E-value for p as long as ﬁ <p< %
A slightly weaker but simpler E-value is

1+ B(x—p) > eBx—p)—p?

aslongasz(%_lp)gﬁgﬁ



Bernoulli E-process explicit construction: Upcrossings

For now fix 0 </ < u < 1.
Suppose that X, </ and X;, > u.

If we product the weak e-value (with legal ) from time t; + 1 to time t», we make

[%)
[ %P7 = exp(B(t2% — 1% — (82 — 1)) — (2 — 11)°)

i=t;+1



Bernoulli E-process explicit construction: Upcrossings

For now fix 0 </ < u < 1.
Suppose that X, </ and X;, > u.

If we product the weak e-value (with legal ) from time t; + 1 to time t», we make

[%)
[ %P7 = exp(B(t2% — 1% — (82 — 1)) — (2 — 11)°)

i=t;+1

Is that good?



Bernoulli E-process explicit construction: Upcrossings

If X, <1 < u <X, then
1-1

1—u

h > t1

If u> p, the hardest t, is that value. We then get

t1{=; (8(1-p)—5?)

e
If we run with 8 = (u — p)+ (which is legal), we guarantee

ot (=) (u—p)s

And as t; > 1 w.l.o.g., this is at least

=D (u=p)s



Down and up

A downcrossing from u at t; to | at tp can be symmetrically exploited with negative
B =—(p—1I)4 for a gain of
elu=N(p=1)+

Now for any p, a full down-up cycle gives at least

min e(u_l)((u_p)++(p_l)+) — e(u_I)2
p<[0,1]

(u=1)?

So the minimum of running products is an E-process winning e every cycle.



In pictures
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Bernoulli Conclusion

Given 0 < / < u < 1, we can make an E-process that multiplies by e(u=1)? every
down-up cycle. This hence has infinite supremum if liminf, X, < I and
limsup,, X, > u.

Two more standard techniques finish the job

e A countable Bayesian mixture over rational /, u has oo supremum if lim, X, does

not exist.

e Bayesian mixture of height-stopped copies gets oo limit given oo supremum.



Examples

Truncated Cauchy (Negative) Example



Cauchy Example

Now let P = {i.i.d. P,]a > 0} where P, is Cauchy truncated to [+a].

Since P, has bounded support, P,(Agiy) = 0.

So Agiv is P-polar.

But p*(Adgiv) = 1.

Why? A finite-time detector 7 for Agj, will fire on Pcaychy since Pcauchy(Adiv) = 1.
But for large a, P, looks enough like Pcaychy at time 7.

So by our result, no diverging E-process exists.



More details

Consider any stopping time 7 such that Ag;, C {7 < co}. We have
Pa(7(X) < 00) > Pa(7(X) < o0 and |X¢| < a for all t < 7(X))

= Q(7(X) < oo and |X¢| < a for all t < 7(X)),

Next, since Q(7(X) < 00) > Q(Agiv) =1
= Q(|X¢| < afor all t < 7(X))
>Q(Xe] <aforall t < T)—Q(r(X)>T)

for any T € N. Fix any € > 0 and choose T large enough that Q(7(X) > T) <«
>Q([X¢] <aforallt < T)—e.

Sending a to oo we find that sup,c(g o) Pa(T(X) < 00) > 1 —¢. Since 7 was an
arbitrary stopping time with Ag, C {7 < oo} it follows that p*(Agiy) > 1 — . Since
this holds for every ¢ > 0, we obtain p*(Agiv) = 1.



Examples

Uniform Strong Law (Positive) Example



Recovering from Cauchy

Bernoulli is ok, but truncated Cauchy is too wild.
Need some uniformity.
Theorem

Let P be a family of probability measures P under which (Xt)ten is i.i.d. with

Ep[|X1]] < co. Assume also that P satisfies the centered uniform integrability
condition

im0 4~ B0 o] =0

Then M*(Adiv) =0.



Conclusion




Conclusion

We talked about confident finite-time detection of events in composite settings.

Paper also contains

e E-process characterisation for p*(A) > 0
e Pricing interpretation of u*

e Line crossing inequality
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