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Introduction



Starting point: Ville’s Result

Fix filtered probability space (Ω,F , (Fn)n,P) and (tail) event A ∈ F . Then

Theorem

P(A) = 0 iff there is a test martingale (Mn)n for P tending to ∞ on A.



Why is that useful

If P is true and P(A) = 0 then A will not happen.

A martingale (Mn)n diverging on A allows detecting A in finite time with Type-1 error

control.

To do so, we declare A is happening at τ = inf{n | Mn ≥ 1/α}.

• If A happens, we detect it for sure

• Under P, probability of (false) detection is ≤ α.

Definition

A stopping time τ detects the event A ∈ F in finite time with confidence α if

A ⊆ {τ < ∞} and P {τ < ∞} ≤ α.



Examples of Ville’s result

For i.i.d. Bernoulli(1/2), can detect in finite time:

• SLLN: running average converges to 1/2

• LIL: deviations from 1/2 of order
√

ln ln n
n

• . . .



Composite Upgrade



Question

Suppose we face i.i.d. Bernoulli(p) for unknown p ∈ [0, 1].

The running average of outcomes will converge.

But can we detect divergence in finite time?

For each fixed p there is a divergence detector.

But it may never happen that all detectors fire.



First attempt

We are interested in a composite null P.

We say event A is P-polar if P(A) = 0 for all P ∈ P.

Maybe

Conjecture

A is P-polar iff there is a P-test (super)martingale tending to ∞ on A.

But the universe says no.



Fundamental Problems

Some P-polar sets

• are finite-time detectable, but not by P-(super)martingales.

• are not finite-time detectable at all.

Example

Let P = {Pn | n ∈ N}, where Pn deterministically outputs sequence 0n · 1 · 0N

Let A = {0N}, so A is P-polar.

Any purported finite-time detection of A must occur seeing some prefix 0m.

But then Pn(detection) = 1 for all n ≥ m. No error control



Successful attempt

Definition

Non-negative (En)n is an E-process for P if

EP [Eτ ] ≤ 1 for any P ∈ P and stopping time τ

Let’s define the minimax finite-time detection probability:

Definition

µ∗(A) = inf
τ∈T :A⊆{τ<∞}

sup
P∈P

P(τ < ∞)

We show

Theorem

µ∗(A) = 0 iff there is an E-process for P tending to ∞ on A.



Examples



Divergence

We focus on X1,X2, . . . i.i.d. from P ∈ P for different composite P.

We write X̄n = 1
n

∑n
i=1 Xi for the running average.

We focus on the event

Adiv =
{
the limit lim

n→∞
X̄n does not exist

}



Divergence

X̄n diverges iff there are rational l < u s.t. both X̄n ≤ l and X̄n ≥ u infinitely often.



Examples

Bernoulli (Positive) Example



Question

Let

P = {P|P is i.i.d. Bernoulli}

Recall x̄n = 1
n

∑n
i=1 xi . Consider the event

Adiv = {x̄n does not converge}

E-process diverging on Adiv?
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Bernoulli E-process explicit construction: E-values

For i.i.d. Bernoulli p

1 + β(x − p)

is a E-value for p as long as −1
1−p ≤ β ≤ 1

p .

A slightly weaker but simpler E-value is

1 + β(x − p) ≥ eβ(x−p)−β2

as long as −1
2(1−p) ≤ β ≤ 1

2p
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Bernoulli E-process explicit construction: Upcrossings

For now fix 0 ≤ l < u ≤ 1.

Suppose that x̄t1 ≤ l and x̄t2 ≥ u.

If we product the weak e-value (with legal β) from time t1 + 1 to time t2, we make

t2∏
i=t1+1

eβ(xi−p)−β2
= exp

(
β (t2x̄t2 − t1x̄t1 − (t2 − t1)p)− (t2 − t1)β

2
)

Is that good?
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Bernoulli E-process explicit construction: Upcrossings

If x̄t1 ≤ l < u ≤ x̄t2 , then

t2 ≥ t1
1− l

1− u

If u ≥ p, the hardest t2 is that value. We then get

et1
u−l
1−u (β(1−p)−β2)

If we run with β = (u − p)+ (which is legal), we guarantee

et1(u−l)(u−p)+

And as t1 ≥ 1 w.l.o.g., this is at least

e(u−l)(u−p)+



Down and up

A downcrossing from u at t1 to l at t2 can be symmetrically exploited with negative

β = −(p − l)+ for a gain of

e(u−l)(p−l)+

Now for any p, a full down-up cycle gives at least

min
p∈[0,1]

e(u−l)((u−p)++(p−l)+) = e(u−l)2

So the minimum of running products is an E-process winning e(u−l)2 every cycle.
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Bernoulli Conclusion

Given 0 < l < u < 1, we can make an E-process that multiplies by e(u−l)2 every

down-up cycle. This hence has infinite supremum if lim infn X̄n ≤ l and

lim supn X̄n ≥ u.

Two more standard techniques finish the job

• A countable Bayesian mixture over rational l , u has ∞ supremum if limn X̄n does

not exist.

• Bayesian mixture of height-stopped copies gets ∞ limit given ∞ supremum.



Examples

Truncated Cauchy (Negative) Example



Cauchy Example

Now let P = {i.i.d. Pa|a > 0} where Pa is Cauchy truncated to [±a].

Since Pa has bounded support, Pa(Adiv) = 0.

So Adiv is P-polar.

But µ∗(Adiv) = 1.

Why? A finite-time detector τ for Adiv will fire on PCauchy since PCauchy(Adiv) = 1.

But for large a, Pa looks enough like PCauchy at time τ .

So by our result, no diverging E-process exists.



More details

Consider any stopping time τ such that Adiv ⊆ {τ < ∞}. We have

Pa(τ(X ) < ∞) ≥ Pa(τ(X ) < ∞ and |Xt | < a for all t ≤ τ(X ))

= Q(τ(X ) < ∞ and |Xt | < a for all t ≤ τ(X )),

Next, since Q(τ(X ) < ∞) ≥ Q(Adiv) = 1

= Q(|Xt | < a for all t ≤ τ(X ))

≥ Q(|Xt | < a for all t ≤ T )−Q(τ(X ) > T )

for any T ∈ N. Fix any ε > 0 and choose T large enough that Q(τ(X ) > T ) ≤ ε

≥ Q(|Xt | < a for all t ≤ T )− ε.

Sending a to ∞ we find that supa∈(0,∞) Pa(τ(X ) < ∞) ≥ 1− ε. Since τ was an

arbitrary stopping time with Adiv ⊆ {τ < ∞} it follows that µ∗(Adiv) ≥ 1− ε. Since

this holds for every ε > 0, we obtain µ∗(Adiv) = 1.



Examples

Uniform Strong Law (Positive) Example



Recovering from Cauchy

Bernoulli is ok, but truncated Cauchy is too wild.

Need some uniformity.

Theorem

Let P be a family of probability measures P under which (Xt)t∈N is i.i.d. with

EP [|X1|] < ∞. Assume also that P satisfies the centered uniform integrability

condition

lim
K→∞

sup
P∈P

E
P

[∣∣∣X1 − E
P
[X1]

∣∣∣ 1|X1−EP [X1]|>K

]
= 0.

Then µ∗(Adiv) = 0.



Conclusion



Conclusion

We talked about confident finite-time detection of events in composite settings.

Paper also contains

• E-process characterisation for µ∗(A) > 0

• Pricing interpretation of µ∗

• Line crossing inequality
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