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Starting Point



Setup

Goal: Keep it simple, focus on essence.

We fix

• Binary alphabet X = {0, 1}
• Final time T

T = 2 is interesting, and so is T = 3.

• Set H of distributions on XT (“the null”)

i.i.d. case is interesting. Simple (point null) is boring

• Single distribution Q on XT (“point alternative”)

i.i.d. case is interesting. Simple is interesting.



Running Example: Bernoulli Twins

Let Pθ denote i.i.d. Bernoulli(θ).

Throughout this talk we will focus on testing null

H =
{
P 1

3
,P 2

3

}
with help of point alternative

Q = P 1
2

based on T observations.
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E-value

Definition

A random variable E : XT → R+ is an e-value for H if

E
XT∼P

[
E (XT )

]
≤ 1 for all P ∈ H.



Example E-value

For the Bernoulli Twins case, one possible e-value is

E (XT ) =
P 1

2
(XT )

max
{
P 1

3
(XT ),P 2

3
(XT )

}
Aaditya’s Universal Inference e-value

Does it have any power?



Example E-value

For the Bernoulli Twins case, one possible e-value is

E (XT ) =
P 1

2
(XT )

max
{
P 1

3
(XT ),P 2

3
(XT )

}
Aaditya’s Universal Inference e-value

Does it have any power?



Optimal E-values

Definition

The GRO e-value is the maximiser of

max
E an e-value for H

E
XT∼Q

[
lnE (XT )

]



Example of GRO E-value: Bernoulli Twins case

Recall Q = P 1
2
and H =

{
P 1

3
,P 2

3

}
.

Then the GRO e-value is

EGRO(XT ) =
P 1

2
(XT )

1
2P 1

3
(XT ) + 1

2P 2
3
(XT )

“the RIPR prior is 50-50”

Instance of Muriel’s Group Invariance (Haar prior)

Theorem (Grünwald, de Heide, and Koolen, 2019)

EGRO(XT ) = Q(XT )
PW (XT )

for PW ∈ conv(H) minimising KL(Q∥PW ).
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The good

“Type-I” error control under H (Markov)

For any e-value E , on replications

XT
1 ,XT

2 , . . . i.i.d. from Q

the LLN gives

1

n

n∑
i=1

lnE (XT
i )

a.s.→ E
XT∼Q

[
lnE (XT )

]
︸ ︷︷ ︸
maximised by GRO E



The bad

At SAVI, we are interested in optional stopping!

Problem

Recall e-value E : XT → R+ was only defined on batch XT .

So E (X t) for t < T nonsensical.



Wait, wait, wait . . . Perhaps a miracle occurs?

For simple H = {P}, EGRO(XT ) = Q(XT )
P(XT )

is a P-martingale.

So EGRO(X τ ) is safe (i.e. an e-value) for any stopping rule τ after all.

What about composite H?

The Bernoulli Twins GRO e-value

EGRO(XT ) =
P 1

2
(XT )

1
2P 1

3
(XT ) + 1

2P 2
3
(XT )

had 50-50 RIPR prior independent of T . So maybe . . .

. . . butNO! (EGRO(X t))t is not a (super)-martingale under either element of the

null, and EGRO(X τ ) is unsafe for some τ .
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Still, are we already satisfied?

A product of sequential E-variables is an e-process.

E (Xm) =
m∏
i=1

E (Xi )

But is it a powerful E-process?

NO, it is too safe!

The expected stopped value is ≤ 1 even under a switching sequence of elements from

null H. “Imprecise Probability”

No Free Lunch: superfluous safety is hampering our power.
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Hampering Power?



Hampering Power?



The plan

Roll up sleeves and

1. Define E on X≤T (“random variable” ⇒ “random process”)

2. Upgrade safety criterion (“e-value” ⇒ “e-process”)

3. Upgrade power criterion (GRO ⇒ LOAVEV)

4. Profit



Anytime-Validity



Setup with stopping

Distribution P on XT and stopping rule τ give rise to stopped distribution Pτ on X≤T .

Example: if τ stops after seeing a one, then Pτ
1
3

can output

X τ Pτ
1
3

(X τ )

1 1
3

01 2
3
1
3

001
(
2
3

)2 1
3

0001 the remainder
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Setup with stopping

To keep a point alternative yet make optional stopping interesting, we will employ

randomised stopping times.

We encode these by τ(Xm) ∈ [0, 1] indicating the conditional probability of stopping:

Pτ (Xm) = P(Xm)

(
m−1∏
i=0

(
1− τ(X i )

))
τ(Xm) for any Xm ∈ X≤T .

Example: if τ stops with probability 1/2, then Pτ
1
3

outputs

X τ Pτ
1
3

(X τ )

ϵ 1
2

0 2
3

(
1
2

)2
1 1
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E-processes

Recall that the null H is a set of distributions on XT .

Definition (AVEV aka e-process )

A process E : X≤T → R+ is an anytime-valid e-value for H if

E
Xm∼Pτ

[E (Xm)] ≤ 1 for all P ∈ H, any stopping time τ

Interpretation: E (X τ ) is an e-value regardless of stopping rule imposed.



Upgrading the GRO criterion

To upgrade GRO, we need an upgraded alternative.

We will pick a distribution Q on XT and a (randomised) stopping time σ.

As before, this encodes our hope for what happens when null H is false.
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Upgrading the GRO criterion

Fix H, alternative Q on XT and randomized stopping time σ.

Definition (LOAVEV)

The log-optimal anytime-valid e-value is the maximiser of

max
E an AVEV for H

E
Xm∼Qσ

[lnE (Xm)]



Reduction to batch case

LOAVEV is actually standard GRO for the “arbitrarily stopped” null

H′ = {Pτ |P ∈ H, τ stopping time}

and the “σ-stopped” alternative

Q ′ = Qσ

both defined on X≤T .

So what do LOAVEVs look like?
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Representation (1)

LOAVEVs are admissible e-processes, and hence

Theorem (Ramdas, Ruf, Larsson, and Koolen, 2020)

ELOAVEV(Xm) = min
P∈H

MP(Xm)

where MP is a P-martingale for each P.



Representation (2)

ELOAVEV(Xm) =
Qσ(Xm)∫

Pτ (Xm)w∗(P, τ) d(P, τ)

“RIPR form”

In fact, ELOAVEV(Xm) = Qσ(Xm)
PW (Xm) where PW ∈ conv (H′) minimises KL(Qσ∥PW )



Simple special cases

Theorem (Koolen and Grünwald, 2021)

If H and Q are i.i.d. and the 1-outcome RIPR P̃ is in H (not a mixture) then

ELOAVEV(Xm) =
Q(Xm)

P̃(Xm)

for any σ.



The generic case

What can we hope to see?

• Perhaps

ELOAVEV(Xm) =
Pσ

1
2

(Xm)

1
2P

σ
1
3

(Xm) + 1
2P

σ
2
2

(Xm)
?

• Martingale-like behaviour? Betting interpretation? Explainable strategies?

• ELOAVEV should retain invariances common to Q, σ and H.
Cases in point

• label flips

• exchangeability (if nobody cares about the order, why should LOAVEV)



Numerical example

Bernoulli Twins case with uniform stopping time σ(xm) = 1
T+1−m .

LOAVEV problem is strictly concave (solution unique)

Not fun to enumerate all deterministic stopping rules. Instead we use use rewrite based

on flow representation (see paper)

Computation with CVX convex optimisation library.

I’ll show you ELOAVEV for T = 3, 4, 6.
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LOAVEV for Bernoulli Twins, T = 6 rounds
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Weird stuff

• Rebounds

• Stopping

• Not based on sufficient statistic



Open Problem

Only just started

Examples/remarks/ideas/conjectures welcome!

We are very likely not smart enough to see the elegant structure of the LOAVEV.

Can you?



Conclusion



Conclusion

• Natural upgrade of GRO criterion to anytime validity

• First results

• Trivialises in special cases

• As-of-yet ill understood general case

• As-of-yet computational nightmare

Thanks!
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