
Reinforcement Learning 2021
Guest Lecture on Pure Exploration

Wouter M. Koolen

Download these slides from
https://wouterkoolen.info/Talks/2021-10-19.pdf!

▶ Pure Exploration:
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Grand Goal: Interactive Machine Learning

Query:

most effective drug dose?

most appealing website layout?

safest next robot action?

or

experiment

outcome
42

Main scientific questions

▶ Efficient systems

▶ Sample complexity as function of query and environment
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Pure Exploration and Reinforcement Learning

Both are about learning in uncertain environments.

Pure Exploration focuses on the statistical problem (learn the truth),
while Reinforcement Learning focuses on behaviour (maximise reward).

Pure Exploration occurs as sub-module in some RL algorithms (i.e.
Phased Q-Learning by Even-Dar, Mannor, and Mansour, 2002)

Some problems approached with RL are in fact better modelled as pure
exploration problems. Most notably MCTS for playing games.
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Best Arm Identification
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Formal model
max

Environment (Multi-armed bandit model)
K distributions parameterised by their means µ = (µ1, . . . , µK ).

The best arm is
i∗ = argmax

i∈[K ]

µi

Strategy

▶ Stopping rule τ ∈ N
▶ In round t ≤ τ sampling rule picks It ∈ [K ]. See Xt ∼ µIt .

▶ Recommendation rule Î ∈ [K ].

Realisation of interaction: (I1,X1), . . . , (Iτ ,Xτ ), Î .

Two objectives: sample efficiency τ and correctness Î = i∗.
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Objective

On bandit µ, strategy (τ, (It)t , Î ) has

▶ error probability Pµ

(
Î ̸= i∗(µ)

)
, and

▶ sample complexity Eµ[τ ].

Idea: constrain one, optimise the other.

Definition

Fix small confidence δ ∈ (0, 1). A strategy is δ-correct (aka δ-PAC) if

P
µ

(
Î ̸= i∗(µ)

)
≤ δ for every bandit model µ.

(Generalisation: output ϵ-best arm)

Goal: minimise Eµ[τ ] over all δ-correct strategies.
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Algorithms

▶ Sampling rule It?

▶ Stopping rule τ?

▶ Recommendation rule Î?

Î = argmax
i∈[K ]

µ̂i (τ)

where µ̂(t) is empirical mean.

Approach: start investigating lower bounds
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Instance-Dependent Sample Complexity Lower
bound

Define the alternatives to µ by Alt(µ) = {λ|i∗(λ) ̸= i∗(µ)}.

Theorem (Castro 2014; Garivier and Kaufmann 2016)

Fix a δ-correct strategy. Then for every bandit model µ

E
µ
[τ ] ≥ T ∗(µ) ln

1

δ

where the characteristic time T ∗(µ) is given by

1

T ∗(µ)
= max

w∈△K

min
λ∈Alt(µ)

K∑
i=1

wi KL(µi∥λi ).

Intuition (going back to Lai and Robbins [1985]): if observations are
likely under both µ and λ, yet i∗(µ) ̸= i∗(λ), then learner cannot stop
and be correct in both.
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Instance-Dependent Sample Complexity Lower
bound

Blackboard proof
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Example

0.0 0.1 0.2 0.3 0.4

K = 5 arms, Bernoulli µ = (0.0, 0.1, 0.2, 0.3, 0.4).

T ∗(µ) = 200.4 w∗(µ) = (0.01, 0.02, 0.06, 0.46, 0.45)

At δ = 0.05, the time gets multiplied by ln 1
δ = 3.0.
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Sampling Rule

Look at the lower bound again. Any good algorithm must sample with
optimal (oracle) proportions

w∗(µ) = argmax
w∈△K

min
λ∈Alt(µ)

K∑
i=1

wi KL(µi∥λi )

Track-and-Stop
Idea: draw It ∼ w∗(µ̂(t − 1)).

▶ Ensure µ̂(t) → µ hence Ni (t)/t → w∗
i by “forced exploration”

▶ Draw arm with Ni (t)/t below w∗
i (tracking)

▶ Computation of w∗ (reduction to 1d line search)
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Stopping

When can we stop?

When can we stop and give answer ı̂?
There is no plausible bandit model λ on which ı̂ is wrong.

Definition

Generalized Likelihood Ratio (GLR) measure of evidence

GLRn (̂ı) := ln
supµ:ı̂∈i∗(µ) P (X n|An,µ)

supλ:ı̸̂∈i∗(λ) P (X n|An,λ)

Idea: stop when GLRn (̂ı) is big for some answer ı̂.
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GLR Stopping

For any plausible answer ı̂ ∈ i∗(µ̂(n)), the GLRn simplifies to

GLRn (̂ı) = inf
λ:ı̸̂∈i∗(λ)

K∑
a=1

Na(n) KL(µ̂a(n), λa)

where KL(x , y) is the Kullback-Leibler divergence in the exponential
family.
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GLR Stopping, Treshold

What is a suitable threshold for GLRn so that we do not make mistakes?

A mistake is made when GLRn (̂ı) is big while ı̂ ̸∈ i∗(µ).
But then

GLRn (̂ı) = inf
λ:ı̸̂∈i∗(λ)

K∑
a=1

Na(n) KL(µ̂a(n), λa) ≤
K∑

a=1

Na(n) KL(µ̂a(n), µa) .

Good anytime deviation inequalities exist for that upper bound.

Theorem (Kaufmann and Koolen, 2018)

P

∃n :
K∑

a=1

Na(n) KL(µ̂a(n), µa) −
∑
n

ln lnNa(n) ≥ C (K , δ)

 ≤ δ

for C (K , δ) ≈ ln 1
δ + K ln ln 1

δ .
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All in all

Final result: lower and upper bound meet on every problem instance.

Theorem (Garivier and Kaufmann 2016)

For the Track-and-Stop algorithm, for any bandit µ

lim sup
δ→0

Eµ [τ ]

ln 1
δ

= T ∗(µ)

Very similar optimality result for Top Two Thompson Sampling by Russo
(2016). Here Ni (t)/t → w∗

i result of posterior sampling.
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Problem Variations and Algorithms
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Variations

▶ Prior knowledge about µ
▶ Shape constraints: linear, convex, unimodal, etc. bandits
▶ Non-parametric (and heavy-tailed) reward distributions (Agrawal,

Koolen, and Juneja, 2021)
▶ . . .

▶ Questions beyond Best Arm
▶ A/B/n testing (Russac et al., 2021)
▶ Robust best arm (part 2 today)
▶ Thresholding
▶ Best VaR, CVaR and other tail risk measures (Agrawal, Koolen, and

Juneja, 2021)
▶ . . .

▶ Multiple correct answers
▶ ϵ-best arm
▶ In general (Degenne and Koolen, 2019)

(Requires a change in lower bound and upper bound)
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Lazy Iterative Optimisation of w∗

Instead of computing at every round the plug-in oracle weights

w∗(µ̂) = argmax
w∈△K

min
λ∈Alt(µ̂)

K∑
i=1

wi KL(µ̂i∥λi )︸ ︷︷ ︸
concave in w

We may work as follows

▶ The inner problem is concave in w.

▶ It can be maximised iteratively, i.e. with gradient descent.

▶ We may interleave sampling and gradient steps.

▶ A single gradient step per sample is enough (Degenne, Koolen, and
Ménard, 2019)
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Minimax Action Identification
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Model (Teraoka, Hatano, and Takimoto, 2014)

max

min

max

min

Maximin Action Identification Problem
Find best move at root from samples of leaves.

guarantee?
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My Brief History

9 2 13 9 7 18 20 9

Best Arm Identification Depth 2 Game
(Garivier and Kaufmann, 2016) (Garivier, Kaufmann, and Koolen, 2016)

Solved, continuous Open, continuous?

7 8 20 17

γ

Depth 1.5 Game
(Kaufmann, Koolen, and Garivier, 2018)

Solved, discontinuous
22 / 34



What we are able to solve today

Noisy games of any depth

5 4 4 2 1 7 8 5 3 4 2 6 8 1 9 8

MAX MIN µ is N (µ, 1)
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Example Backward Induction Computation

5 4 4 2 1 7 8 5 3 4 2 6 8 1 9 8

MAX MIN µ is N (µ, 1)
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Example Backward Induction Computation

4

4

4

4

5 4

2

4 2

5

1

1 7

5

8 5

3

3

3

3 4

2

2 6

8

1

8 1

8

9 8

MAX MIN µ is N (µ, 1)
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Model
Definition

A game tree is a min-max tree with leaves L. A bandit model µ
assigns a distribution µℓ to each leaf ℓ ∈ L.

The maximin action (best action at the root) is

i∗(µ) := argmax
a1

min
a2

max
a3

min
a4

· · · µa1a2a3a4...

Protocol

For t = 1, 2, . . . , τ :

▶ Learner picks a leaf Lt ∈ L.
▶ Learner sees Xt ∼ µLt

Learner recommends action Î

Learner is δ-PAC if

∀µ : P
µ

(
τ < ∞∧ Î ̸= i∗(µ)

)
≤ δ
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Main Theorem I: Lower Bound

Define the alternatives to µ by Alt(µ) = {λ|i∗(λ) ̸= i∗(µ)}.
NB here i∗ is best action at the root

Theorem (Castro 2014; Garivier and Kaufmann 2016)

Fix a δ-correct strategy. Then for every bandit model µ

E
µ
[τ ] ≥ T ∗(µ) ln

1

δ

where the characteristic time T ∗(µ) is given by

1

T ∗(µ)
= max

w∈△K

min
λ∈Alt(µ)

K∑
i=1

wi KL(µi∥λi ).
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Main Theorem II: Algorithm
Idea is still to consider the oracle weight map

w∗(µ) := argmax
w∈△K

min
λ∈Alt(µ)

K∑
i=1

wi KL(µi∥λi )

and track the plug-in estimate: Lt ∼ w∗(µ̂(t − 1)).

But what about continuity? Does µ̂(t) → µ imply w∗(µ(t)) → w∗(µ)?

But w∗ is not continuous. Even at depth “1.5” with 2 arms.

Theorem (Degenne and Koolen, 2019)

Take set-valued interpretation of argmax defining w∗. Then µ 7→ w∗(µ)
is upper-hemicontinuous and convex-valued. Suitable tracking ensures
that as µ̂(t) → µ, any wt ∈ w∗(µ̂(t − 1)) have

min
w∈w∗(µ)

∥wt −w∥∞ → 0

Track-and-Stop is asymptotically optimal.
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λ∈Alt(µ)

K∑
i=1

wi KL(µi∥λi )

and track the plug-in estimate: Lt ∼ w∗(µ̂(t − 1)).

But what about continuity? Does µ̂(t) → µ imply w∗(µ(t)) → w∗(µ)?

But w∗ is not continuous. Even at depth “1.5” with 2 arms.

Theorem (Degenne and Koolen, 2019)

Take set-valued interpretation of argmax defining w∗. Then µ 7→ w∗(µ)
is upper-hemicontinuous and convex-valued. Suitable tracking ensures
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Example

5 4 4 2 1 7 8 5 3 4 2 6 8 1 9 8
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On Computation

To compute a gradient (in w) we need to differentiate

w 7→ min
λ∈Alt(µ)

K∑
i=1

wi KL(µi∥λi )

An optimal λ ∈ Alt(µ) can be found by binary search for common value
plus tree reasoning in O(|L|) (board).
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Conclusion
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Conclusion

This concludes the guest lecture.

▶ It has been a pleasure

▶ Good luck for the exam

▶ If you have an idea that you want to work on . . .
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