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» Pure Exploration:
» PAC Learning
> Best Arm ldentification
» Minimax Strategies in Noisy Games (Zero-Sum, Extensive Form)
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Grand Goal: Interactive Machine Learning

Query:
(most effective drug dose?)

(most appealing website Iayout?)

(safest next robot action?)

experiment

outcome
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Grand Goal: Interactive Machine Learning

Query:
(most effective drug dose?)

(most appealing website Iayout?)

(safest next robot action?)

experiment

outcome

Main scientific questions

» Efficient systems
» Sample complexity as function of (queryj and (environment)
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Pure Exploration and Reinforcement Learning

Both are about learning in uncertain environments.
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Pure Exploration and Reinforcement Learning

Both are about learning in uncertain environments.

Pure Exploration focuses on the statistical problem ( ),
while Reinforcement Learning focuses on behaviour ( ).

Pure Exploration occurs as sub-module in some RL algorithms (i.e.
Phased Q-Learning by Even-Dar, Mannor, and Mansour, 2002)

Some problems approached with RL are in fact better modelled as pure
exploration problems. Most notably MCTS for playing games.
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Best Arm ldentification
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Formal model

@
Environment (Multi-armed bandit model)

K distributions parameterised by their means p = (p1, . . ., k).

The best arm is

*

i - argmaX /’l/l'
ie[K]

6/34



Formal mode|6</| e

Environment (Multi-armed bandit model)
K distributions parameterised by their means p = (p1, . . ., k).

The best arm is

*

i* = argmax p;
i€[K]

Strategy

> Stopping rule T € N
» In round t < 7 sampling rule picks Iy € [K]. See X; ~ p,.
> Recommendation rule | € [K].

6/34



Formal model

‘,)
Environment (Multi-armed bandit model)
K distributions parameterised by their means p = (p1, . . ., k).

The best arm is

i* = argmax u;

i€[K]

Strategy

> Stopping rule T € N
» In round t < 7 sampling rule picks Iy € [K]. See X; ~ p,.
> Recommendation rule | € [K].

Realisation of interaction: (fy, X1), ..., (Ir, X;), 1.
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Formal model

- - . ‘1 & /
Environment (Multi-armed bandit model)
K distributions parameterised by their means p = (p1, . . ., k).

The best arm is

i* = argmax u;

i€[K]

Strategy
> Stopping rule T € N

» In round t < 7 sampling rule picks Iy € [K]. See X; ~ p,.
> Recommendation rule | € [K].
Realisation of interaction: (h, X1),..., (lr, X;), I
objectives: sample efficiency T and correctness =i
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Objective

On bandit p, strategy (7, (It)t, 1) has
» error probability P ( i*(p)), and
» sample complexity E,,[7].

Idea: constrain one, optimise the other.
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Fix small confidence § € (0,1). A strategy is d-correct (aka 6-PAC) if

P(I #i* () < 6 for every bandit model .
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Objective

A,

On bandit p, strategy (7, (/¢)t, /) has
> error probability P,, (I # i*(p)), and
» sample complexity E,,[7].
Idea: constrain one, optimise the other.
Definition
Fix small confidence § € (0,1). A strategy is d-correct (aka 6-PAC) if

P(I #i* () < 6 for every bandit model .
"

(Generalisation: output e-best arm)

Goal: minimise E,[7] over

7/34



Algorithms

» Sampling rule /,?
» Stopping rule 77
» Recommendation rule /7

I = argmax fii(7)
i€[K]

where [i(t) is empirical mean.
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Algorithms

» Sampling rule /,?
» Stopping rule 77
» Recommendation rule /7

I = argmax fii(7)
i€[K]

where [i(t) is empirical mean.

Approach: start investigating lower bounds
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Instance-Dependent Sample Complexity Lower
bound
Define the alternatives to p by Alt(p) = {A|i*(X) # i*(w)}.
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Instance-Dependent Sample Complexity Lower
bound
Define the alternatives to p by Alt(p) = {A|i*(X) # i*(w)}.

Theorem (Castro 2014; Garivier and Kaufmann 2016)

Fix a d-correct strategy. Then for every bandit model p

Elr] > T*(u)in;

where the characteristic time T*(u) is given by

K
= max min w; KL( i || Ai)-
T*(K)  wenx AcAl(u) ; (k|2
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Instance-Dependent Sample Complexity Lower
bound
Define the alternatives to p by Alt(p) = {A|i*(A) # i*(w)}.

Theorem (Castro 2014; Garivier and Kaufmann 2016)

Fix a d-correct strategy. Then for every bandit model p

Elr] > T*(u)in;

where the characteristic time T*(u) is given by

K
= max min w; KL(wi|[A7)-
T*(K)  wenx AcAl(u) ; (k|2

Intuition (going back to Lai and Robbins [1985]): if observations are
likely under both w and A, yet i*(u) # i*(A), then learner cannot stop
and be correct in both.
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Instance-Dependent Sample Complexity Lower
bound

Blackboard proof
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Example

A\
09 0) 02 03 I

—

K =5 arms, Bernoulli ¢ = (0.0,0.1,0.2,0.3,0.4).

T*(u) = 2004  w*(p) = (0.01,0.02,0.06,0.46,0.45)

At § = 0.05, the time gets multiplied by In $ = 3.0.
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Sampling Rule

Look at the lower bound again. Any good algorithm sample with
optimal (oracle) proportions

K
w*(p) = argmax min ZW; KL(i||N)
welAk XeAl(p) T
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Sampling Rule

Look at the lower bound again. Any good algorithm sample with
optimal (oracle) proportions

w*(p) = argmax min ZW, KL(i||N)
welAk XeAl(p) T

Track-and-Stop

Idea: draw /; ~ w*(f(t —1)).
» Ensure fi(t) — p hence N;(t)/t — w* by “forced exploration”
» Draw arm with N;(t)/t below w;* (tracking)

> Computation of w* (reduction to 1d line search)
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Stopping

When can we stop?
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Definition
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Stopping

When can we stop?
When can we stop and give answer 77
There is no plausible bandit model A on which 7 is wrong.

Definition

Generalized Likelihood Ratio (GLR) measure of evidence

SUP:aei= () P(Xn|Anvll')
SUPxsgi-(n) P (XA, A)

GLR,(}) = In

Idea: stop when GLR,(?) is big for some answer 3.
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GLR Stopping

For any plausible answer 7 € i*(fi(n)), the GLR, simplifies to

K
GLR.(1) = NN > Na(n) KL(f1a(n), As)
ET* a=1

where KL(x, y) is the Kullback-Leibler divergence in the exponential
family.
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GLR Stopping, Treshold

What is a suitable threshold for GLR,, so that we do not make mistakes?
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GLR Stopping, Treshold

What is a suitable threshold for GLR,, so that we do not make mistakes?
A mistake is made when GLR,(?) is big while 7 & i*(p).
But then

K

GLR,(7) = |nf ZN (), Xa) < | D No(n)KL(fia(n), 1a) |

AAgi*( a1
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GLR Stopping, Treshold

What is a suitable threshold for GLR,, so that we do not make mistakes?
A mistake is made when GLR,(?) is big while 7 & i*(p).

But then
K
GLRa(i) = inf Z Na (M), A) < | D7 Na(n) KL(fia(n), ta) |
e ( 1
Good exist for that upper bound.

Theorem (Kaufmann and Koolen, 2018)

a=1

]P’(Ein: > Na(n) KL(f1a(n), pa) |~ ZInInN ) > C(K, 5)) b

for C(K,8) ~In3 + Klinln 1.
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All in all

Final result: lower and upper bound meet on every problem instance.

Theorem (Garivier and Kaufmann 2016)
For the Track-and-Stop algorithm, for any bandit p

E
lim sup —£=— [17] = T"(w)
§—0 |ng
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All in all

Final result: lower and upper bound meet on every problem instance.

Theorem (Garivier and Kaufmann 2016)
For the Track-and-Stop algorithm, for any bandit p
lim sup w = T"(w)

§—0 |ng

Very similar optimality result for Top Two Thompson Sampling by Russo
(2016). Here N;(t)/t — w;* result of posterior sampling.
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Problem Variations and Algorithms
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Variations

» Prior knowledge about u
» Shape constraints: linear, convex, unimodal, etc. bandits
» Non-parametric (and heavy-tailed) reward distributions (Agrawal,

Koolen, and Juneja, 2021)
> ...

> Questions beyond Best Arm
> A/B/n testing (Russac et al., 2021)
> Robust best arm (part 2 today)
» Thresholding
> Best VaR, CVaR and other tail risk measures (Agrawal, Koolen, and
Juneja, 2021)
> ..
» Multiple correct answers
> e-best arm
> In general (Degenne and Koolen, 2019)
(Requires a change in lower bound and upper bound)
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Lazy Iterative Optimisation of w*

Instead of computing at every round the plug-in oracle weights

w* (1) = argmax min ZW, KL(fi]| A7)
welk XeAl(p) T

concave in w

We may work as follows
» The inner problem is concave in w.
» It can be maximised iteratively, i.e. with gradient descent.

> We may sampling and gradient steps.

> A gradient step per sample is enough (Degenne, Koolen, and

Ménard, 2019)
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Minimax Action ldentification
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Model (Teraoka, Hatano, and Takimoto, 2

Maximin Action ldentification Problem
Find best move at root from samples of leaves.
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Model (Teraoka, Hatano, and Takimoto, 2

Maximin Action ldentification Problem
Find best move at root from samples of leaves.

guarantee?
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My Brief History

£\

/\
ofole)o O® @O

Best Arm Identification Depth 2 Game
(Garivier and Kaufmann, 2016)  (Garivier, Kaufmann, and Koolen, 2016)
Open, continuous?

-

Depth 1.5 Game
(Kaufmann, Koolen, and Garivier, 2018)
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What we are able to solve today

Noisy games of any depth

( )
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Example Backward Induction Computation
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Example Backward Induction Computation




Model

A game tree is a min-max tree with leaves £. A bandit model p
assigns a distribution i, to each leaf ¢ € L.
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Model

Definition
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The maximin action (best action at the root) is

i*(p) = argmaxmin maxmin- - iz aa5a...
ar an as ag
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Model

Definition
A game tree is a min-max tree with leaves £. A bandit model p
assigns a distribution i, to each leaf ¢ € L.

The maximin action (best action at the root) is

i*(p) = argmaxmin maxmin- - iz aa5a...
ar a as ag
Protocol

Fort=1,2,..., 7:
» Learner picks a leaf |, € L.
> Learner sees X; ~ pu,

Learner recommends action /

Learner is 9-PAC if
V/,L:IP’(T<OO/\IA7$/*(;L)) <9
m
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Main Theorem |: Lower Bound

Define the alternatives to p by Alt(p) = {A|i*(X) # i*(w)}.
NB here i* is best action at the root
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Main Theorem |: Lower Bound

Define the alternatives to p by Alt(p) = {A|i*(X) # i*(w)}.
NB here i* is

Theorem (Castro 2014; Garivier and Kaufmann 2016)

Fix a d-correct strategy. Then for every bandit model p
. 1
Blr] = T*(p)In <
m )

where the characteristic time T*(w) is given by

K

= max min w; KL (]| A7)-
T*(w) WEAK AeAlt(p) ,z:; P KLl A7)
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Main Theorem Il: Algorithm

Idea is still to consider the oracle weight map

K

w*(p) = argmax min ZWiKL(/M”)\i)
weAk AEAl(pn) 41

and track the plug-in estimate: L, ~ w*(f(t —1)).

27 /34



Main Theorem Il: Algorithm

Idea is still to consider the oracle weight map

K

w*(p) = argmax min ZWiKL(/M”)\i)
weAk AEAl(pn) 41

and track the plug-in estimate: L, ~ w*(f(t —1)).

But what about continuity? Does fi(t) — p imply w*(u(t)) — w*(u)?

27 /34



Main Theorem Il: Algorithm

Idea is still to consider the oracle weight map

K

w*(p) = argmax min ZWiKL(/Ji”)\i)
weAk AEAl(pn) 41

and track the plug-in estimate: L, ~ w*(f(t —1)).
But what about continuity? Does fi(t) — p imply w*(u(t)) — w*(u)?

But w* is . Even at depth “1.5" with 2 arms.

27 /34



Main Theorem Il: Algorithm

Idea is still to consider the oracle weight map
K
w*(p) = argmax min Z w; KL(i||A)
weAk AEAl(pn) 41
and track the plug-in estimate: L, ~ w*(f(t —1)).
But what about continuity? Does fi(t) — p imply w*(u(t)) — w*(u)?

But w* is . Even at depth “1.5" with 2 arms.

Theorem (Degenne and Koolen, 2019)

Take set-valued interpretation of argmax defining w*. Then p — w* ()
is upper-hemicontinuous and convex-valued. Suitable tracking ensures
that as fi(t) — w, any w; € w*(fi(t — 1)) have

min  |lw; —wl|, — 0
wew* ()

Track-and-Stop is asymptotically optimal.
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Example




On Computation

To compute a gradient (in w) we need to differentiate

K
w —  min w; KL(i]| A7)
A€AK(p) ;

An optimal A € Alt(p) can be found by binary search for common value
plus tree reasoning in O(|£]) (board).
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Conclusion
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Conclusion

This concludes the guest lecture.
» It has been a pleasure

» Good luck for the exam

» If you have an idea that you want to work on . ..

31/34



@ Agrawal, S., W. M. Koolen, and S. Juneja (Dec. 2021). “Optimal
Best-Arm Identification Methods for Tail-Risk Measures”. In:
Advances in Neural Information Processing Systems (NeurlPS) 34.
Accepted.

@ Castro, R. M. (Nov. 2014). “Adaptive sensing performance lower
bounds for sparse signal detection and support estimation”. In:
Bernoulli 20.4, pp. 2217-2246.

[§ Degenne, R. and W. M. Koolen (Dec. 2019). “Pure Exploration with
Multiple Correct Answers”. In: Advances in Neural Information
Processing Systems (NeurlPS) 32, pp. 14591-14600.

@ Degenne, R., W. M. Koolen, and P. Ménard (Dec. 2019).
“Non-Asymptotic Pure Exploration by Solving Games”. In: Advances
in Neural Information Processing Systems (NeurlPS) 32,
pp. 14492-14501.

[ Even-Dar, E., S. Mannor, and Y. Mansour (2002). “PAC Bounds for
Multi-armed Bandit and Markov Decision Processes”. In:
Computational Learning Theory, 15th Annual Conference on
Computational Learning Theory, COLT 2002, Sydney, Australia, July
8-10, 2002, Proceedings. Vol. 2375. Lecture Notes in Computer
Science, pp. 255-270.

32/34



[ Garivier, A. and E. Kaufmann (2016). “Optimal Best arm
Identification with Fixed Confidence”. In: Proceedings of the 29th
Conference On Learning Theory (COLT).

@ Garivier, A., E. Kaufmann, and W. M. Koolen (June 2016).
“Maximin Action ldentification: A New Bandit Framework for
Games". In: Proceedings of the 29th Annual Conference on Learning
Theory (COLT).

@ Kaufmann, E. and W. M. Koolen (Oct. 2018). “Mixture Martingales
Revisited with Applications to Sequential Tests and Confidence
Intervals”. Preprint.

@ Kaufmann, E., W. M. Koolen, and A. Garivier (Dec. 2018).
“Sequential Test for the Lowest Mean: From Thompson to Murphy

Sampling”. In: Advances in Neural Information Processing Systems
(NeurlPS) 31, pp. 6333-6343.

@ Russac, Y., C. Katsimerou, D. Bohle, O. Cappé, A. Garivier, and
W. M. Koolen (Dec. 2021). “A/B/n Testing with Control in the
Presence of Subpopulations”. In: Advances in Neural Information
Processing Systems (NeurlPS) 34. Accepted.

33/34



[ Russo, D. (2016). “Simple Bayesian Algorithms for Best Arm
Identification”. In: CoRR abs/1602.08448.

ﬁ Teraoka, K., K. Hatano, and E. Takimoto (2014). “Efficient
Sampling Method for Monte Carlo Tree Search Problem”. In: |EICE
Transactions on Infomation and Systems, pp. 392-398.

34 /34



	Introduction and Motivation
	Best Arm Identification
	Model
	Sample Complexity Lower Bound
	Algorithms

	Problem Variations and Algorithms
	Minimax Action Identification
	Conclusion
	References

