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E-values are an exciting way to measure evidence against a
(composite) null hypothesis.

We (i.e. you!) are developing a better understanding of the
tools, techniques, trade-offs ...
* Practical, intuitive toolbox for designing things that work.

* Beautiful open questions in the theory.
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Example
Interesting example: bounded (1 + ¢)-th moment for ¢ > 0:

Ex.p [|X|1+6] <B

Heavy-tailed distributions including Pareto, Fisher-Tippett, ...
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Question
What does the non-parametric GRO look like?
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GRO e-value Hypotheses

theorem (finite A version)

Theorem
S is an e-value for H, if there are non-negative n > 0 such that

S(x) < 1+) m(Ex(x)—1) forallxeX.
AEN

The GRO e-value for H, is found by solving

In (1 + ) m (Ex(X) - 1))]

max Exo[InS(X)] = maxEx.o
20 AeA

S an e-value for Hy




RIPr version

p‘)('
We may also write the following Q

in KL(Q|IP
il

= maxmin n Q(X) T - y -
B m e 20 Eo {I P(X)} +§\ A (Ex~p [Ex(X) —1]) + v (Ex~p[1] — 1)

So that o)
X
Px) = v+ Z,\e/\ TAEA(X)

All in all, the GRO e-value is a likelihood ratio

Q(x)
PV*;)\* (X)

And we are back in the Turner 2021 case.

S*(x) =



Application and Exte

Techniques partially developed/exploited in Bandit literature
under the names KLInf and empirical likelihood
(Honda and Takemura, 2010; Cappé et al., 2013; Agrawal, Juneja, and Glynn, 2020; Agrawal, Juneja, and Koolen, 2021; Agrawal,

Koolen, and Juneja, 2020)



Application and Extensions

Techniques partially developed/exploited in Bandit literature
under the names KLInf and empirical likelihood

(Honda and Takemura, 2010; Cappé et al., 2013; Agrawal, Juneja, and Glynn, 2020; Agrawal, Juneja, and Koolen, 2021; Agrawal,

Koolen, and Juneja, 2020)

Optimality both for regret and PAC learning objectives.



Application and Extensions

Techniques partially developed/exploited in Bandit literature
under the names KLInf and empirical likelihood

(Honda and Takemura, 2010; Cappé et al., 2013; Agrawal, Juneja, and Glynn, 2020; Agrawal, Juneja, and Koolen, 2021; Agrawal,

Koolen, and Juneja, 2020)
Optimality both for regret and PAC learning objectives.

Connections to worst-case regret bounds for exp-concave
losses (yield anytime-valid confidence intervals with |A| as the
notion of capacity).



Application and Extensions

Techniques partially developed/exploited in Bandit literature
under the names KLInf and empirical likelihood

(Honda and Takemura, 2010; Cappé et al., 2013; Agrawal, Juneja, and Glynn, 2020; Agrawal, Juneja, and Koolen, 2021; Agrawal,

Koolen, and Juneja, 2020)
Optimality both for regret and PAC learning objectives.

Connections to worst-case regret bounds for exp-concave
losses (yield anytime-valid confidence intervals with |A| as the
notion of capacity).

Question

Non-linear conditions? Variance? CVaR? Centered moment
constraints?
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Cox’ problem: test all means 0 vs one mean p # 0.

Vovk proposes

* Use mean on first blocks to pick a population.

e Comp

ute the mean (ML) a of the first block.

e Use i.i.d. P, as the alternative model for the second block.
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Cox’ problem: test all means 0 vs one mean p # 0.

Vovk proposes

* Use mean on first blocks to pick a population.
* Compute the mean (ML) a of the first block.
e Use i.i.d. P, as the alternative model for the second block.

General(!) Simple. Elegant. Beautiful.

Consideration:

* The first blocks are used to select a block: a will overfit
(slightly).

e If a > pthen E = P,/Py is only expected to win if a < 2u.

* Are there ways to dampen a?

e Curiously: problem gets worse if there are multiple
populations with p # 0.



At each time-point t, the hypothesis is that p; is a better
prediction that g; (as measured by score function S).

Henzi proposes (say p: < qt)
* Compute the mid-point s € (pt, g:) (halfway for Brier).
* Use null Ho = {Ber(0) | 0 € [0, ]}.
* Use alternative © = 3q¢ + 1p¢ > k.
* Multiply evidence by e-value P.(Y)/P.(Y).
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At each time-point t, the hypothesis is that p; is a better
prediction that g; (as measured by score function S).

Henzi proposes (say p: < qt)
* Compute the mid-point s € (pt, g:) (halfway for Brier).
* Use null Ho = {Ber(0) | 0 € [0, ]}.
* Use alternative © = 3q¢ + 1p¢ > k.
* Multiply evidence by e-value P.(Y)/P.(Y).

Ingenious. Pretty. (A Larsson e-value hypothesis!)

Consideration:

* 7 is expected to gain evidence for true parameter p
between x and . But what if p =k 4 €?

* Are there (effect size?) guidelines for setting € a priori?

* Universal modelling (mixture) over €?



Conclusion

Safety and Power
Joy and elegance

Sequential story only partially understood.

* Product of GRO may not be GRO itself.
Order of quantifiers matters!

* GRO+invariance sometimes leads to test-super-martingale
in reduced filtration.
When? Approximately?

Exciting area!



Thanks!
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