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Conclusion

E-values are an exciting way to measure evidence against a
(composite) null hypothesis.

We (i.e. you!) are developing a better understanding of the
tools, techniques, trade-offs . . .

• Practical, intuitive toolbox for designing things that work.
• Beautiful open questions in the theory.
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GRO Non-parametrics



Larsson & De Heide

Larsson constructs hypotheses by requiring a family (Eλ)λ∈Λ to
be e-values:
e-value hypothesis class

HΛ :=
{
P on X

∣∣ ∀λ ∈ Λ : EX∼P [Eλ(X)] ≤ 1
}

Example
Interesting example: bounded (1 + ε)-th moment for ε > 0:

EX∼P

[
|X|1+ε

]
≤ B

Heavy-tailed distributions including Pareto, Fisher-Tippett, . . .
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GRO e-value Hypotheses

Larsson’s theorem (finite Λ version)
Theorem
S is an e-value for HΛ if there are non-negative π ≥ 0 such that

S(x) ≤ 1 +
∑
λ∈Λ

πλ(Eλ(x)− 1) for all x ∈ X .

The GRO e-value for HΛ is found by solving

max
S an e-value for H0

EX∼Q [lnS(X)] = max
π≥0

EX∼Q

[
ln

(
1 +

∑
λ∈Λ

πλ (Eλ(X)− 1)

)]



GRO e-value Hypotheses

Larsson’s theorem (finite Λ version)
Theorem
S is an e-value for HΛ if there are non-negative π ≥ 0 such that

S(x) ≤ 1 +
∑
λ∈Λ

πλ(Eλ(x)− 1) for all x ∈ X .

The GRO e-value for HΛ is found by solving

max
S an e-value for H0

EX∼Q [lnS(X)] = max
π≥0

EX∼Q

[
ln

(
1 +

∑
λ∈Λ

πλ (Eλ(X)− 1)

)]



RIPr version

We may also write the following

min
P∈HΛ

KL(Q‖P)

= max
ν∈R
π≥0

min
P≥0

EQ

[
ln
Q(X)

P(X)

]
+
∑
λ∈Λ

πλ (EX∼P [Eλ(X)− 1]) + ν (EX∼P[1]− 1)

So that
P(x) =

Q(x)

ν +
∑
λ∈Λ πλEλ(x)

All in all, the GRO e-value is a likelihood ratio

S∗(x) =
Q(x)

Pν∗,λ∗(x)

And we are back in the Turner 2021 case.



Application and Extensions

Techniques partially developed/exploited in Bandit literature
under the names KLInf and empirical likelihood
(Honda and Takemura, 2010; Cappé et al., 2013; Agrawal, Juneja, and Glynn, 2020; Agrawal, Juneja, and Koolen, 2021; Agrawal,

Koolen, and Juneja, 2020)

Optimality both for regret and PAC learning objectives.

Connections to worst-case regret bounds for exp-concave
losses (yield anytime-valid confidence intervals with |Λ| as the
notion of capacity).

Question
Non-linear conditions? Variance? CVaR? Centered moment
constraints?
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Choosing the Alternative



Vovk

Cox’ problem: test all means 0 vs one mean µ 6= 0.

Vovk proposes

• Use mean on first blocks to pick a population.
• Compute the mean (ML) a of the first block.
• Use i.i.d. Pa as the alternative model for the second block.

General(!) Simple. Elegant. Beautiful.

Consideration:

• The first blocks are used to select a block: a will overfit
(slightly).

• If a > µ then E = Pa/P0 is only expected to win if a < 2µ.
• Are there ways to dampen a?
• Curiously: problem gets worse if there are multiple
populations with µ 6= 0.
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Henzi

At each time-point t, the hypothesis is that pt is a better
prediction that qt (as measured by score function S).

Henzi proposes (say pt < qt)

• Compute the mid-point κ ∈ (pt,qt) (halfway for Brier).
• Use null H0 = {Ber(θ) | θ ∈ [0, κ]}.
• Use alternative π = 3

4qt + 1
4pt > κ.

• Multiply evidence by e-value Pπ(Y)/Pκ(Y).

Ingenious. Pretty. (A Larsson e-value hypothesis!)

Consideration:

• π is expected to gain evidence for true parameter µ
between κ and π. But what if µ = κ+ ε?

• Are there (effect size?) guidelines for setting ε a priori?
• Universal modelling (mixture) over ε?
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Conclusion

Safety and Power

Joy and elegance

Sequential story only partially understood.

• Product of GRO may not be GRO itself.
Order of quantifiers matters!

• GRO+invariance sometimes leads to test-super-martingale
in reduced filtration.
When? Approximately?

Exciting area!



Thanks!
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