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Motivation

Estimating the value of a state in

• Extensive form games (MCTS)
• MDPs (tabular) (Bellman backup)
• . . .

from (noisy) observations

s0



High-level

Simplified Model
Stochastic bandit µ1, . . . , µK .

Problem
We want to learn about µ∗ := maxk µk.

• Hypothesis test of {µ∗ < γ} vs {µ∗ > γ}
• Fixed confidence vs fixed budget

• Make confidence interval [LCB,UCB] for µ∗

• Uniform sampling vs adaptive sampling
• Fixed sample size vs any-time valid.
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Asymptotic Theory

Asymptotically, only the data from arm i∗ := argmaxk µk matters:

µ∗ ∈ µ̂i∗,n ±

√
2σ2 ln

1
δ

n/K



Practice is not asymptotic

Can we get mileage out of data from other arms?

Interpolate adaptively between width ∼
√

1
n/K and ∼

√
1
n?

• Batch data from other arms (those close to maximum)
• More samples!
• Bias

(i.e. can estimate 1
K
∑

i µi from all n samples)
• Use multivariate confidence regions

• Balls/Ellipsoids, KL eggs (≈ χ2K)
• Especially useful for LCB on µ∗

Incomparable results in practise (Kaufmann, Koolen, and
Garivier, 2018).

None of these seem especially principled.
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Open Problem

Non-asymptotic instance-dependent

• practical confidence intervals for µ∗

• lower bounds

Inspiration: Bayesian posterior for µ∗ adapts automatically!

Applications everywhere!
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Thanks!
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